Font Size: a A A

Energy efficient circuit design using nanoelectromechanical relays

Posted on:2013-11-26Degree:Ph.DType:Thesis
University:The University of Texas at DallasCandidate:Venkatasubramanian, RamakrishnanFull Text:PDF
GTID:2458390008981811Subject:Engineering
Abstract/Summary:
Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area.;In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 – 10nm has been developed taking into account all the electrical, mechanical and dispersion effects.;This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures.;A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS. This dissertation demonstrates NEM relay based charge pump and NEM-CMOS heterogeneous discontinuous conduction mode (DCM) buck regulator and the results are compared against a standard commercial 0.35μm CMOS implementation. It is shown that NEM-CMOS heterogeneous DC-DC converter has an area savings of 60% over CMOS and achieves an overall higher efficiency over CMOS, with a peak efficiency of 94.3% at 100mA.;NEM relays offers unprecedented 10X-30X energy efficiency improvement in logic design for low frequency operation and has the potential to break the CMOS efficiency barrier in power electronic circuits as well. The practical aspects of NEM Relay integration are evaluated and algorithms for synthesis and development of large NEM relay based logic circuits are explored.
Keywords/Search Tags:Relay, NEM, Circuit, Over CMOS, Using, Energy, Logic
Related items