Font Size: a A A

Analysis and Design of High Performance 128-bit Parallel Prefix End-Around-Carry Adder

Posted on:2012-01-31Degree:M.SType:Thesis
University:Northeastern UniversityCandidate:Turkyilmaz, OgunFull Text:PDF
GTID:2458390011957833Subject:Engineering
Abstract/Summary:
Addition is a timing critical operation in today's floating point units. In order to develop faster processing, an end-around carry (EAC) was proposed as a part of fused-multiply-add unit which performs multiplication followed by addition [5]. The proposed EAC adder was also investigated through other prefix adders in FPGA technology as a complete adder [6]. In this thesis, we propose a 128-bit standalone adder with parallel prefix end around carry logic and conditional sum blocks to improve the critical path delay and provide flexibility to design with different adder architectures. In previous works, CLA logic was used for EAC logic. Using a modified structure of a parallel prefix 2n-1 adder provides flexibility to the design and decreases the length of the carry path. After the architecture is tested and verified, critical path is analyzed using FreePDK45nm library. Full custom design techniques are applied carefully during critical path optimization. Critical path analysis provides fast comparison of the total delay among different architectures without designing the whole circuit and a simpler approach to size the transistors for lowest delay possible. As a final step, datapath is designed as a recurring bitslice for fast layout entry. The results show that the proposed adder shows 142ps delay, 2.42mW average power dissipation, and 3,132 sq. micron area assuming there is not much routing area overhead in the estimated area.
Keywords/Search Tags:Parallel prefix, Adder, Carry, Critical
Related items