Font Size: a A A

Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

Posted on:2005-11-12Degree:Ph.DType:Dissertation
University:University of Colorado at BoulderCandidate:Stroud, Kenneth JoshuaFull Text:PDF
GTID:1458390008991057Subject:Engineering
Abstract/Summary:
Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle.; In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight.; In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations, reducing vestibular disturbances must be considered in the early phases of spacecraft design.; An integrated approach combining vestibular disturbances, mission constraints, and other human concerns is proposed in a spacecraft design solution that concurrently addresses all of the above constraints.
Keywords/Search Tags:Space, Vestibular disturbances, SMS, Training, Virtual
Related items