Font Size: a A A

Design of ZnS/ZnSe Gradient-Index Lenses in the Mid-Wave Infrared and Design, Fabrication, and Thermal Metrology of Polymer Radial Gradient Index Lense

Posted on:2018-07-10Degree:Ph.DType:Thesis
University:University of RochesterCandidate:Corsetti, James AnthonyFull Text:PDF
GTID:2470390020956411Subject:Optics
Abstract/Summary:
Gradient-index (GRIN) materials are ones for which the index of refraction varies as a function of spatial coordinate within an optical element. The radial GRIN is a specific instance where the isoindicial surfaces, or surface of constant index of refraction, exist as concentric cylinders centered upon the optical axis. The variation of the index of refraction as a function of lens aperture yields a second source of optical power in the element with the first coming from the lens' surface curvatures. This fact, coupled with the chromatic variation of the GRIN profile, provides the optical designer with additional degrees of freedom as compared to a traditional homogeneous lens, most notably in the pursuit of correcting chromatic aberration. This thesis explores a number of topics related to the design, manufacture, and testing of radial GRIN elements.;Such elements are used in a series of design studies, the first on the application of the crystalline ZnS/ZnSe GRIN material to the mid-wave infrared (MWIR) waveband between 3 and 5 mum and the second to a copolymer GRIN of polymethyl methacrylate (PMMA) and polystyrene over the visible spectrum. In both cases, GRIN singlets are seen to act as achromats over their respective wavebands. A series of zoom lens design studies are presented in which the GRIN designs consistently offer superior color correction and imaging performance over homogeneous designs of the same number of elements.;Efforts to fabricate the PMMA/polystyrene radial GRIN are presented. For this purpose, a centrifugal force method is employed whereby both MMA and styrene monomer are rapidly rotated in a temperature-controlled environment. As copolymerization occurs, the spinning of the sample causes the isoindicial surfaces to take on a cylindrical shape. Process challenges including monomer-to-polymer volume reduction and haze are both presented along with a discussion of the fabricated radial samples. A profile manufactured in this way is modeled as part of the aforementioned zoom lens studies in CODEVRTM to determine the sensitivity of the design space to the GRIN profile shape.;When designing any optical system, it is important to know how that system will behave with a change in temperature. In order to answer that, two key material parameters are defined: (1) the coefficient of thermal expansion (CTE) which dictates how much a material expands or contracts with a temperature change and (2) the temperature-dependent refractive index (dn/dT) which determines how the index of refraction changes. A series of computer models are presented for the purpose of determining how a radial GRIN element is affected by a given temperature change. Analogous to it being possible to achromatize a single radial GRIN element, modeling work shows that it is also possible to athermalize such an element.;Finally, an interferometric system is presented for the purpose of measuring both the CTE and dn/dT of a sample simultaneously. The system operates by tracking changes in optical path difference between the sample and background as a function of temperature in order to carry out these measurements. Results on a number of samples including steel, ZrO2, CaF2, Zerodur, Sapphire, and a series of PMMA/polystyrene copolymers are presented.
Keywords/Search Tags:GRIN, Index, Presented, Lens, Refraction, Series
Related items