Font Size: a A A

Investigation of optical properties of biomolecular materials for developing a novel fiber optic biosensor

Posted on:1996-01-23Degree:Ph.DType:Thesis
University:University of Massachusetts LowellCandidate:Gao, Harry HongFull Text:PDF
GTID:2468390014985308Subject:Chemistry
Abstract/Summary:
Recently considerable efforts have been devoted to the development of optical biosensors for applications such as environmental monitoring and biomedical technology. The research described in this thesis focuses on the development of a novel fiber optic biosensor system for pesticide detection based on enzyme catalyzed chemiluminescence.;To optimize the collection efficiency, the tapering effect of a fiber tip has been studied in different cases of light source distribution utilizing fluorescence technique. Our results indicate that a continuously tapered tip with the largest tapering angle is the most efficient configuration when the light source is in a "thick" layer ;Three immobilization schemes have been investigated. The molecular self assembly approach takes advantage of the strong binding between streptavidin and biotin, with a biotinylated polymer as a support. The sol-gel process has the advantage of encapsulating biomolecules in a transparent glass. A photodynamic protein phycoerythrin has been successfully immobilized on a fiber surface by both techniques. The multilayer enzyme assembly we developed utilizes a bifunctional amino coupling agent to link between different layers of enzyme through chemical bonding. The method offers the flexibility of controlling the number of enzymes on a fiber surface. Multilayer of alkaline phosphatase have been characterized using various techniques including chemiluminescence, ellipsometry and surface plasma resonance. The results indicated that at least 3 layers of enzyme can be assembled on a fiber surface. With this approach, it is possible to immobilize different kinds of enzyme on a fiber surface for biosensors based on a multi-enzyme system.;Based on the studies of tapered tip and immobilization schemes, a novel fiber optic biosensor system for the detection of organophosphorous-based pesticide has been developed. The detection mechanism is pesticide inhibition of alkaline phosphatase catalyzed chemiluminescence. Paraoxon with concentration as low as 167 ppb has been detected. This is the first fiber optic chemiluminescence-based biosensor utilizing tapered tips with enzyme immobilized on the fiber surface and a cooled CCD array detector.
Keywords/Search Tags:Fiber, Biosensor, Enzyme
Related items