Font Size: a A A

Reconfigurable high-speed optical signal processing and high-capacity optical transmitter

Posted on:2015-02-19Degree:Ph.DType:Dissertation
University:University of Southern CaliforniaCandidate:Chitgarha, Mohammad RezaFull Text:PDF
GTID:1478390017991938Subject:Engineering
Abstract/Summary:
The field of optics and photonics enables several technologies including communication, bioimaging, spectroscopy, Ladars, microwave photonics and data processing [1-139]. The ability to use and manipulate large amounts of data is transforming many vital areas of society. The high capacity that optics brought to communications might also bring advantages to increase performance in signal processing by using a novel all-optical implementation of a tapped-delay-line, a fundamental building block for digital signal processing. This all-optical alternative provides real-time processing of amplitude- and phase-encoded optical fields, such that the overall potential speed-up is 10-100 fold faster than individual electronic processors with 5 GHz clock speeds. It can also enhance the optical data generation and transmission techniques by using different optical nonlinear processes to achieve higher baud rate data with more complex modulation format.;Here, we demonstrate a reconfigurable high- speed optical tapped-delay-line, enabling several fundamental real-time signal processing functions such as equalization, correlation and discrete Fourier transform. Using nonlinear optics and dispersive elements, continuous tunability in time, amplitude and phase of the tapped-delay-line can be achieved at high speed. We also demonstrate a reconfigurable optical generation of higher-order modulation formats including pulse-amplitude-modulation (PAM) signals and quadrature-amplitude-modulation (QAM) signals [140-195].
Keywords/Search Tags:Optical, Processing, Reconfigurable, Data
Related items