Font Size: a A A

Alternating current thin film electroluminescence in the near infrared from zinc sulfide doped with rare earths

Posted on:2004-11-25Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Kale, AjayFull Text:PDF
GTID:1468390011463818Subject:Engineering
Abstract/Summary:
Near infrared emission (0.7--1.5 mum) of zinc sulfide (ZnS) doped with erbium (Er) or neodymium (Nd) has been studied in alternating current thin film electroluminescent devices (ACTFELDs). The electroluminescent (EL) thin film phosphors were radio frequency planar magnetron sputter deposited by co-sputtering an undoped ZnS target together with a ZnS: 1.5 mole% ErF 3 or ZnS: 1.5 mole% NdF3 target. The ZnS:ErF3 and ZnS:NdF3 thin film phosphors were annealed for one hour in ultra high purity N2 at temperatures ranging from 350--475°C. Annealing at 425°C for 1 hour in nitrogen was the optimal post-deposition treatment for both the ZnS:ErF3, and ZnS:NdF3 thin film phosphors, resulting in EL power densities of 7.5 and 28 muW/cm2 for the 990nm and the 1550nm emission of ZnS:ErF3, respectively. The power densities were 7.5 (750%) and 28 (2800%) times larger than those from the as-deposited films, which exhibited a power density ∼1muW/cm 2 at both wavelengths. In the case of ZnS:NdF3, 26 and 15 muW/cm2 deposited samples. Post-deposition annealing resulted in a 8 and 1.5 times increase in total device efficiency to 0.42 W/W and 0.7 W/W) for ZnS:ErF3 and ZnS:NdF3, respectively. This was attributed to a reduction in the concentration of shallow defects, which leads to a larger effective phosphor field and band bending, an increase in the conduction charge, and a reduction of inelastic scattering of ballistic electrons. While the peak emission wavelengths from Er were independent of annealing temperature, peak shifts were observed for Nd due to hybridization of the 5d-4f orbitals. At annealing temperatures <425°C, the density of shallow traps is high, and electrons from higher energy excited states of the luminescent ions to shallow, non-radiative defect levels pump the lower energy IR states. For annealing temperatures >425°C, the shallow defect states are annealed out, leading to more efficient direct radiative relaxation from the higher lying excited states, and more intense visible luminescence is observed.
Keywords/Search Tags:Thin film, Zns, States
Related items