Font Size: a A A

Mobility management architecture and modeling for label switched networks (mobility label based network)

Posted on:2011-11-25Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Berzin, OlegFull Text:PDF
GTID:1448390002465114Subject:Engineering
Abstract/Summary:
With the proliferation of IP based mobile applications network layer mobility management is expected to play an increasingly significant role in the architectures of the mobile networks. The mobile network evolution offers higher data rates and lower latencies that target mobile-to-mobile traffic patterns and applications that are all based on W. However, the underlying network layer mobility management schemes employed in the 3G and 4G architectures are not optimized for mobile-to-mobile traffic patterns and result in the user- as well as the network-facing performance penalties that may be considered as inhibiting factors in the network evolution.;We present a Mobility Label Based Network (MLBN) - a new approach to the network layer mobility management that relies on Multi-Protocol Label Switching (MPLS) and provides native integration between the MPLS-aware control and the MPLS-based forwarding planes. MLBN is a scalable, survivable hierarchical mobility management system capable of providing macro- and micro-mobility for IPv4 or IPv6 mobile hosts or routers without the use of Mobile IP while guaranteeing optimal traffic routing between the communicating mobile devices. MLBN uses MPLS to decouple the IP address assigned to a mobile node or a prefix served by a mobile router from the logical topology of the IP network thus resolving a topological conflict associated with the move of a mobile node from a home to a foreign IP network.;When a user connects to the MLBN the mobile device is associated with a Mobility Label while maintaining the original IP address The Mobility Label is then bound to the device's IP address at the edge of the MLBN and this binding is advertised using the MPLS-aware control plane protocol into the label switched network. We show that it is possible to effectively update the network following the mobile node movements and perform optimal packet routing based on the modifiable sequence of the Label Switched Paths.
Keywords/Search Tags:Mobility management, Network, Label, Mobile, IP address, MLBN
Related items