Font Size: a A A

Femtosecond laser waveguide writing in ternary zinc magnesium phosphate glasses

Posted on:2016-01-16Degree:M.SType:Thesis
University:University of California, DavisCandidate:Skovorodnikov, NikolayFull Text:PDF
GTID:2478390017477696Subject:Materials science
Abstract/Summary:
Femtosecond (fs) pulsed laser inscription was used to fabricate optical waveguides in ternary zinc magnesium phosphate glasses with different compositions. The main goal of this work was to find a reliable dielectric material for fs-laser waveguide writing, which has particular physical properties. The material is to be mechanically robust and chemically durable and is to exhibit positive refractive index change under fs-laser irradiation. Besides, such phosphate glass structures possess an advantageous high solubility of rare-earth ions, which can be potentially exploited for the fabrication of active photonic devices.;In order to produce optical changes a fs-laser beam was focused inside the material so a sufficient intensity was reached and permanent structural modification could be induced at the focal volume. The glass samples were translated along the laser beam direction; therefore elongated optical modifications were formed. Whether the written lines were able to guide light was verified by measuring the near-field profile of the output mode of the waveguide at 660 nm. This way, optical guiding was demonstrated for the sample 25MgO 25ZnO 50P2O5 (mole %). Either tracks of damage or negative refractive index changes did not allow demonstrating guiding for other compositions. The laser-induced structural changes within the glass network were studied by means of spatially resolved micro Raman and fluorescence spectroscopy. While slight or no peak shifts, of relevant Raman bands, were found, a strong fluorescence signal was measured and associated with POHC electronic defect formation. These results and corresponding changes of optical properties are discussed in relation with the O/P atomic ratios favorable for waveguide fabrication.
Keywords/Search Tags:Waveguide, Optical, Laser, Phosphate, Glass, Changes
Related items