Font Size: a A A

Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

Posted on:2014-05-13Degree:M.SType:Thesis
University:University of California, DavisCandidate:Hosseini, Seyedeh SonaFull Text:PDF
GTID:2458390005487419Subject:Physics
Abstract/Summary:
The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters.;An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high étendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large étendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very high (R >105) spectral resolution and large étendue in a small package that is compatible with space mission requirements that have not been met with any other SHS technologies to date.;One limitation of current SHS designs is the lack of a broadband capability. To address this gap we are developing a form of the reflective SHS that is tunable over a wide range of wavelength (TSHS). In this work, we describe the primary TSHS concept in a mathematical approach, describe the variations under development, and discuss their scientific potential for the exploration of faint extended targets. An in-development laboratory prototype of a second generation TSHS in which we address several technical limitations noted in earlier studies is shown.;This document contains three chapters. Chapter 1, is an overview of the scientific need for a new instrument that we are introducing here and it is an summery of previous papers. Chapter 2 contains new work developing the mathematical frame work for the all reflective SHS. The results presented in this chapter have not been reported in any related literature before and will be presented in an upcoming conference paper. Chapter 3 contains a laboratory report for construction of a tunable all reflective SHS.
Keywords/Search Tags:SHS, High resolving power, Tunable, Spectroscopy, Sources, Chapter
Related items