Font Size: a A A

Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

Posted on:2016-11-29Degree:Ph.DType:Dissertation
University:The City College of New YorkCandidate:Diba, Abdou SalamFull Text:PDF
GTID:1478390017475909Subject:Remote Sensing
Abstract/Summary:
Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few.;After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before.;A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive.;In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low cost and compactness.;In this dissertation we investigate the performance of the SG-DBR laser for its feasibility to monitor the atmospheric gases and possible other applications. For this purpose, we first reported continuous mode-hope free tuning and detected three consecutive N2O features by controlling all three sections of laser namely: front DBR, back DBR and the phase. Subsequently, we demonstrated a novel mechanism to tuning the laser wavelength by just controlling the current of front and back DBR sections. From this tuning methodology we achieved continuous tuning over a wide range ~ 10 cm-1. Applying the tuning method in a direct absorption spectroscopy, we demonstrated the viability of SG-DBR QCLs in multi-species gas sensing by detecting and retrieving the concentration of N2O, CO and H2O in ambient air. SG-DBR QCLs capability of high resolution spectroscopy has also been demonstrated at reduced pressure. We also performed Time Resolved Spectroscopy (TRS) to determine the tuning speed response when the DBR sections undergo current steps.
Keywords/Search Tags:Laser, Tunable, Spectroscopy, Tuning, DBR, Applications, QCL, Gas
Related items