Font Size: a A A

Novel Design of Tunable Microlens with Lowered Driving Voltage and Iris with Conformal Antireflective Surfac

Posted on:2018-09-14Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Almoallem, Yousuf DawoodFull Text:PDF
GTID:1478390020956774Subject:Electrical engineering
Abstract/Summary:
Miniaturizing camera systems as required in many new compact devices places a severe restriction on the device size and power consumption. In modern life nowadays, a daily used compact devices like mobile phones and tablets must have some essential components such as single or multiple tiny cameras, as a component of micro-optical systems. In fact, for most of the current miniaturized cameras, optical power is varied based on the traditional situation where the distances between the lenses are mechanically varied relying on old-fashioned voice coil motors or equivalent mechanical drivers. Spatial and power consumption could be scaled down drastically with much faster response time when the revolutionary alternative liquid tunable microlens is utilized after acquiring a good understanding of microfluidics. The influence of interfacial tension as a key metric in controlling microfluidics systems (e.g. liquid microlens) has drawn considerable attention in biomedical, industrial, military fields over the past decade. Tunable microlenses overcome aforementioned concerns of miniaturizing optical systems and present a viable solution by tuning the focal length of lenses via, for example, variation in the lens curvature.;Here, a novel tunable dielectrophoretic (DEP)-based tunable lens is presented. Out of many other mechanisms of tuning the lenses, the dielectric mechanism is especially promising since having the capability to achieve a faster response and overcome the electrolysis issue. Nonetheless, DEP usually requires high driving voltage levels. The proposed design is operating with a lowered voltage level and is based on a tunable dielectric liquid lens with a double-sided electrode design, unlike in the conventional scheme with a single-sided electrode design. The design methodology, geometrical analysis, device fabrication, simulation, and testing are demonstrated.;Furthermore, the design, simulation, fabrication and characterization of a black-silicon (BSi) based iris is discussed. Reducing undesirable light stray reflections from surfaces is desired in many 3D optical elements, such as supporting optomechanical mounts, irises, optical filters, solar cells, and photolithography underlying layers. BSi (as antireflective nanostructures) provides a potential economic solution which is highly absorptive across the visible spectrum to replace many currently used yet expensive coating materials. Si nanowires (SiNW) were formed using a metal-assisted chemical (MAC) etching process to get a conformal antireflective property on the iris 3D structure including sharp tips and sidewalls. A significant reduction in undesirable light stray reflections was achieved as a result of successful implementation of the conformal antireflective surface on all facets of fabricated irises to eliminate undesirable light stray reflections.
Keywords/Search Tags:Conformal antireflective, Undesirable light stray reflections, Tunable, Iris, Voltage, Microlens, Systems
Related items