Font Size: a A A

177Lu-labeled Gold Nanoparticles for Radiation Therapy of Locally Advanced Breast Cancer

Posted on:2017-12-07Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Yook, SimmyungFull Text:PDF
GTID:1464390014974176Subject:Pharmaceutical sciences
Abstract/Summary:
Locally advanced breast cancer (LABC) occurs in about 10-15% of patients diagnosed with breast cancer (BC) and 30% of these patients have triple negative breast cancer (TNBC) that are often epidermal growth factor receptor (EGFR)-positive. The goal of the proposed research was design and evaluate preclinically a novel radiation nanomedicine for LABC composed of EGFR-targeted gold nanoparticles (AuNP) by covalently conjugating panitumumab and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complexing 177Lu incorporated into a metal-chelating polymer (MCP) (177 Lu-T-AuNP) which could be used as a neoadjuvant treatment to improve the outcome of patients with LABC. 177Lu-T-AuNP were efficiently internalized by EGFR-positive BC cells and were significantly more effective than 177Lu-labeled and non-targeted (NT)-AuNP for killing these cells. For radiation treatment of EGFR-positive tumours, both 177Lu-T-AuNP and 177Lu-NT-AuNP were intratumourally (i.t.) injected into athymic mice with MDA-MB-468 BC xenografts for comparison. Biodistribution studies showed that 177Lu-T-AuNPs exhibited 2-fold higher tumour retention than 177Lu-NT-AuNPs following i.t. injection at 48 h p.i. Both forms of radiolabeled AuNP were highly effective for inhibiting tumour growth without normal organ toxicity due to local tumour retention of both form of AuNP. To minimize the displacement of 177Lu-labeled MCP from AuNP, polyethylene glycol (PEG) ligands presenting a disulfide [ 177Lu-DOTA-PEG-ortho-pyridyl disulfide (OPSS)], a lipoic acid (LA) [177Lu-DOTA-PEG-lipoic acid (LA)] or multi-LA [PEG- pGlu(177Lu-DOTA)8-LA4] for multivalent binding were synthesized and the stability of MCP-AuNP complexes determined. In vitro challenge study with thiol-containing molecules or human plasma, PEG-pGlu(DOTA)8-LA4-AuNP were most stable. In whole body elimination study, elimination of radioactivity due to displacement of 177Lu-MCP from AuNP in mice injected with 177Lu-DOTA-PEG-OPSS-AuNP was more rapid, indicating that 177Lu-DOTA-PEG-OPSS-AuNP was less stable than two other forms of 177Lu-MCP-AuNP. Since MCP presenting a terminal multi-LA group provides the greatest stability, this conjugation chemistry is the most promising for construction of 177 Lu-labeled and antibody-targeted AuNP for neoadjuvant treatment of LABC.
Keywords/Search Tags:Breast cancer, LABC, Aunp, 177lu-labeled, Radiation
Related items