Font Size: a A A

Simultaneous high-speed spectral and infrared imaging of engine combustion

Posted on:2006-05-07Degree:Ph.DType:Dissertation
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Jansons, MarcisFull Text:PDF
GTID:1458390008954155Subject:Engineering
Abstract/Summary:
A novel and unique diagnostic apparatus has been developed and applied to combustion gas mixtures in engine cylinders. The computer-controlled system integrates a modified Fastie-Ebert type spectrophotometer with four infrared CCD imagers, allowing the simultaneous acquisition of the spectrum and four spatial images, each at a discrete wavelength. Data buffering allows continuous imaging of the power stroke over consecutive engine cycles at framing rates of 1850 frames/second. Spectral resolution is 28nm with an uncertainty better than 58nm. The nominal response of the instrument is in the range 1.8--4.5mum, with a peak responsivity near the important 2.7mum bands of CO2 and H2O. The spectral range per scan is approximately 1.78mum. To interpret the measured data, a line-by-line radiation model was created utilizing the High-Resolution Transmission (HITRAN) database of molecular parameters, incorporating soot and wall emission effects. Although computationally more intensive, this model represents an improvement in accuracy over the NASA single-line-group (SLG) model which does not include the 'hot' CO2 lines of the 3.8mum region. Methane/air combustion mixture thermodynamic parameters are estimated by the iteration of model variables to yield a synthetic spectrum that, when corrected for wall effects, instrument function, responsivity, window and laboratory path transmissivity, correspond to the measured spectrum. The values of the model variables are used to interpret the corresponding spatial images. For the first time in the infrared an entire engine starting sequence has been observed over consecutive cycles. Preflame spectra measured during the compression stroke of a spark-ignition engine operating with various fuels correlate well with the synthetic spectra of the particular hydrocarbon reactants. The ability to determine concentration and spatial distribution of fuel in the engine cylinder prior to ignition has applications in stratified charge studies and as a fast, response optical feedback mechanism for controlling equivalence ratio.
Keywords/Search Tags:Engine, Spectral, Infrared
Related items