Font Size: a A A

Mechanics and applications of pressure adaptive honeycomb

Posted on:2010-06-16Degree:Ph.DType:Dissertation
University:University of KansasCandidate:Vos, RoelofFull Text:PDF
GTID:1448390002970722Subject:Engineering
Abstract/Summary:
A novel adaptive aerostructure is presented that relies on certified aerospace materials and can therefore be applied in conventional passenger aircraft. This structure consists of a honeycomb material which' cells extend over a significant length perpendicular to the plane of the cells. Each of the cells contains an inelastic pouch (or bladder) that forms a circular tube when the cell forms a perfect hexagon. By changing the cell differential pressure (CDP) the stiffness of the honeycomb can be altered. Using an external force or the elastic force within the honeycomb material, the honeycomb can be deformed such that the cells deviate from their perfect-hexagonal shape. It can be shown that by increasing the CDP, the structure eventually returns to a perfect hexagon. By doing so, a fully embedded pneumatic actuator is created that can perform work and substitute conventional low-bandwidth flight control actuators. It is shown that two approaches can be taken to regulate the stiffness of this embedded actuator: (1) The first approach relies on the pouches having a fixed amount of air in them and stiffness is altered by a change in ambient pressure. Coupled to the ambient pressure-altitude cycle that aircraft encounter during each flight, this approach yields a true adaptive aerostructure that operates independently of pilot input and is controlled solely by the altitude the aircraft is flying at. (2) The second approach relies on a controlled constant CDP. This CDP could be supplied from one of the compressor stages of the engine as a form of bleed air. Because of the air-tight pouches there would essentially be no mass flow, meaning engine efficiency would not be significantly affected due to this application. By means of a valve system the pilot could have direct control over the pressure and, consequently, the stiffness of the structure. This allows for much higher CDPs (on the order of 1MPa) than could physically be achieved by relying on the ambient pressure decrease with altitude. This option does require more infrastructure like tubing, valves, and supporting electronics from the cockpit.;Applications of pressure adaptive honeycomb are tailored primarily towards low-bandwidth applications like secondary flight control. The most profound application is the morphing of an entire wing section, from leading to trailing edge, due to the adaptive honeycomb. On a smaller scale, other examples include a solid state pressure adaptive flap, a pressure adaptive droop nose, a pressure adaptive Gurney flap and a pressure adaptive engine inlet. Each of these applications is based on the same principle of stiffness alteration with pressure and can be used with either actuation option (constant mass or constant pressure).;A model that relates the volumetric change of the honeycomb cells to the external blocked stress was shown to correlate well to experiments that were carried out on several test articles. Based on this model it was estimated that pressure adaptive honeycomb has a maximum mass-specific energy density of 12.4J/g, for the case of an externally applied CDP of 0.9MPa (can be supplied from a high-pressure compressor stage of a gas turbine). In addition, it was shown that a maximum strain of 76% can be achieved and that the maximum blocked stress amounts to 0.82MPa. In the case of a 40kPa drop in atmospheric pressure and constant mass of air in the pouches, the maximum mass specific energy amounts to 1.1J/g and a maximum blocked force of 70kPa can be attained.;Pressure adaptive honeycomb was embedded into a 25%c adaptive flap on a NACA2412 wing section with a chord of 1.08m. Wind tunnel tests at Reynolds number of 1 million demonstrated a shift in the cl -- alpha curve upwards by an average of 0.3, thereby increasing the maximum lift coefficient from 1.27 to 1.52. This successfully demonstrated the application of pressure adaptive honeycomb embedded in a morphing aircraft structure.
Keywords/Search Tags:Adaptive, Application, Structure, CDP, Aircraft, Embedded
Related items