Font Size: a A A

Exploring the Deployment Potential of Small Modular Reactor

Posted on:2015-01-13Degree:Ph.DType:Thesis
University:Carnegie Mellon UniversityCandidate:Abdulla, Ahmed YFull Text:PDF
GTID:2478390017997544Subject:Energy
Abstract/Summary:
This thesis reports the results of several investigations into the viability of an emergent technology. Due to the lack of data in such cases, and the sensitivity surrounding nuclear power, exploring the potential of small modular reactors (SMRs) proved challenging. Moreover, these reactors come in a wide range of sizes and can employ a number of technologies, which made investigating the category as a whole difficult.;We started by looking at a subset of SMRs that were the most promising candidates for near to mid-term deployment: integral light water SMRs. We conducted a technically detailed elicitation of expert assessments of their capital costs and construction duration, focusing on five reactor deployment scenarios that involved a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants varied by more than a factor of 2.5. Expert judgments about likely SMR costs displayed an even wider range. There was consensus that an SMR plant's construction duration would be shorter than a large reactor's. Experts identified more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable, though these reactors do not constitute a paradigm shift when it comes to nuclear power's safety and security.;Using these expert assessments of cost and construction duration, we calculated levelized cost of electricity values for four of the five scenarios. For the large plant, median levelized cost estimates ranged from $56 to $120 per MWh. Median estimates of levelized cost ranged from $77 to $240 per MWh for a 45MWe SMR, and from $65 to $120 per MWh for a 225MWe unit. We concluded that controlling construction duration is important, though not as important a factor in the analysis as capital cost, and, given the price of electricity in some parts of the U.S., it is possible to construct an argument for deploying SMRs in certain locations.;We then decided to investigate the technical and institutional barriers hampering the development and deployment of a subset of six SMRs, including two light water designs and four non-light water advanced designs. We organized an invitational workshop that became an integrated assessment of various designs and of the institutional innovations required to bring SMRs to market.;Some valuable insights were gleaned from the workshop: there is consensus that many of the challenges facing advanced SMRs are rooted in institutional biases in favor of the light water economy, as opposed to technical ones. The institutional factors that are judged to pose the greatest challenge to the mass deployment of SMRs are: the lack of a greenhouse gas control regime; political and financial instability; public concerns about nuclear safety and waste; and inadequate national and international institutions.;When asked what factors most help promote SMR adoption in OECD and developing countries, economic factors dominate the list of characteristics that most contribute to their promotion in OECD countries but, when it comes to developing countries, institutional factors are regarded as being of highest import. Safety of design and safety in operation are judged the most important characteristic on both lists.
Keywords/Search Tags:Deployment, Light water smrs, Construction duration, SMR, Safety, Cost
Related items