Font Size: a A A

Secure Computation from Hardware Assumptions

Posted on:2015-04-20Degree:Ph.DType:Thesis
University:University of California, Los AngelesCandidate:Wadia, AkshayFull Text:PDF
GTID:2478390017489523Subject:Computer Science
Abstract/Summary:
Highly concurrent environments, like the Internet, present new challenges towards design of secure cryptographic protocols. Indeed, it is known that protocols proved secure in the so called 'stand-alone' model, where a protocol is assumed to execute in isolation, are no longer secure in a concurrent environment. In fact, the case of arbitrary composition is so severe that no security can be achieved without an external secure set-up. Numerous such set-ups have been proposed in the literature, each with its own advantages and disadvantages. In this thesis, we study two new set-ups motivated by recent advances in secure hardware design: tamper-proof tokens, and physically uncloneable functions. For both set-ups, we provide universally composable protocols for general cryptographic tasks. Additionally, our protocols using tamper-proof tokens are information-theoretically secure, and non-interactive.
Keywords/Search Tags:Secure, Protocols
Related items