Font Size: a A A

Stokes-polarimetry imaging of tissue

Posted on:2006-07-19Degree:Ph.DType:Thesis
University:Northwestern UniversityCandidate:Wu, Paul JFull Text:PDF
GTID:2454390008969776Subject:Engineering
Abstract/Summary:
A novel Stokes-polarimetry imaging system and technique was developed to quantify fully the polarization properties of light remitted from tissue. The uniqueness of the system and technique is established in the incident polarization. Here, the diffuse illumination is varied and controlled with the intention to improve the visibility of tissue structures. Since light retains some polarization even after multiple-scattering events, the polarization of remitted light depends upon the interactions within the material. Differentiation between tissue structures is accomplished by two-dimensional mapping of the imaged area using metrics such as the degree of linear polarization, degree of circular polarization, ellipticity, and Stokes parameters.; While Stokes-polarimetry imaging can be applied to a variety of tissues and conditions, this thesis focuses on tissue types associated with the disease endometriosis. The current standard in diagnosing endometriosis is visual laparoscopy with tissue biopsy. The documented correlation between laparoscopy inspection and histological confirmation of suspected lesions was at best 67%. Endometrial lesions vary greatly in their appearance and depth of infiltration. Although laparoscopy permits tissue to be assessed by color and texture, to advance beyond the state-of-the-art, a new imaging modality involving polarized light was investigated; in particular, Stokes-polarimetry imaging was used to determine the polarization signature of light that interacted with tissue.; Basic science studies were conducted on rat tails embedded within turbid gelatin. The purpose of these experiments was to determine how identification of sub-surface structures could be improved. Experimental results indicate image contrast among various structures such as tendon, soft tissue and intervertebral discs.; Stokes-polarimetry imaging experiments were performed on various tissues associated with endometriosis to obtain a baseline characterization for each tissue type. Structures such as birefringent collagen, smooth-muscle fiber-bundles, and nerve bundles were visualized that were otherwise not observable with unpolarized light imaging.; Finally, a study of cutaneous scars indicated the feasibility of using Stokes-polarimetry imaging in the detection of atypical tissue. A relationship between incident linear polarization angle and skin anatomy was determined so as to obtain maximum contrast between scar tissue and normal skin.
Keywords/Search Tags:Tissue, Stokes-polarimetry imaging, Polarization, Light
Related items