Font Size: a A A

An experimental study of subcooled choked flow through steam generator tube cracks

Posted on:2014-01-12Degree:M.SType:Thesis
University:Purdue UniversityCandidate:Vadlamani, Ram AnandFull Text:PDF
GTID:2452390005485264Subject:Engineering
Abstract/Summary:
The Work conducted in this Research involved the simulation of Pressurized Water Reactor Conditions of Steam Generators to study the complex phenomenon of Subcooled Choked Flow or two-phase critical flow that occurs when water leaks from the primary side of a steam generator into the secondary side, thus making it highly relevant to Reactor Safety and Probabilistic Risk assessment methods. Slits of small L/D ratio were manufactured and tested on the Facility for Leak Rate Testing at pressures (6.89 MPa) and high temperatures (280°C) relevant to Pressurized Water Reactors over a range of subcooling. Small flow channel length was used (1.3mm) equivalent to steam generator tube thickness with the study of a variety of geometries with differences in surface roughness. Unique to literature, the samples had very small L/Ds and the study was a controlled parametric study of choked flow. The effect of L/D was examined, compared to recent studies conducted at Purdue University by Wolf and Revankar while contrasting with others in literature. Analytical models were applied highlighting the importance of non-equilibrium effects and contrasted with other studies of different L/Ds. RELAP5, a well developed code widely utilized in industry was studied to analyze its predictive capabilities and conditions for best estimate. L/D effects on mass fluxes were studied and it was observed that mass fluxes were affected to a very small degree by subcooling.
Keywords/Search Tags:Steam generator, Choked flow, Small
Related items