Font Size: a A A

MOCVD growth and study of thin films of indium nitrid

Posted on:2007-12-09Degree:Ph.DType:Thesis
University:The Pennsylvania State UniversityCandidate:Jain, AbhishekFull Text:PDF
GTID:2448390005475642Subject:Materials science
Abstract/Summary:
This thesis is focused on a study of MOCVD growth of InN with the goal of providing new information on the effects of growth conditions and buffer/substrate materials on InN film properties. Initial studies, using both (111) Si and (0001) sapphire substrates, identified an optimum growth temperature window of 540--560°C for the formation of stable InN films.;When attempting to grow InN films on sapphire with thicknesses greater than approximately 150 nanometers using an AlN buffer layer, the InN films were observed to delaminate from the buffer/substrate at growth temperature. The combined effect of compressive stress due to high lattice mismatch between InN and AlN (∼14%) and tensile stress due to grain coalescence along with the relatively weak bond strength of InN compared to GaN and AlN, is believed to cause the InN film to crack along the interface and delaminate.;To further investigate the effect of the buffer layer on InN growth, studies were carried out using GaN films grown on sapphire as the growth template. Recent MBE results had indicated a significant difference in the thermal stability and growth mode of In-polar and N-polar InN, with improved properties reported for N-polar material grown on N-polar GaN. MOCVD growth of N-polar GaN is very difficult; consequently, all of the results reported in the literature for InN growth on GaN were likely carried out on Ga-polar material resulting in films with a high surface roughness. By utilizing N-polar and Ga-polar GaN films, it was possible to produce N-polar and In-polar InN films by MOCVD, as determined by convergent beam electron diffraction (CBED) analysis. Furthermore, the polarity was found to dramatically alter the surface roughness and growth mode of the InN films with enhanced lateral growth and reduced surface roughness obtained for N-polar InN. A qualitative model was proposed to explain the different growth mechanisms observed for In-polar and N-polar InN.;In spite of the improvements in surface morphology obtained with growth of N-polar InN, delamination at the InN/GaN interface was still observed in these films, and was also present in In-polar InN samples. Attempts were made to further reduce the lattice mismatch and improve the adhesion between InN and GaN by using a compositionally graded InGaN buffer layer. The fabrication of InGaN over its entire composition range is challenging since the optimal growth parameters window for InGaN varies with composition and film quality is strongly dependent on temperature and precursor flow rates. The structural properties of the InN films grown on the graded InGaN layers were comparable to films grown directly on GaN, however, the film adhesion was significantly improved with no evidence of interfacial cracks between the InN and GaN. These preliminary results indicate that graded InGaN layers can be used to improve the adhesion of InN on both Ga-polar and N-polar GaN, however, further work is needed to develop graded InGaN buffer layers or constant composition InGaN interlayers with improved structural properties for InN growth. (Abstract shortened by UMI.).
Keywords/Search Tags:Growth, Inn, MOCVD, Films, Gan, Buffer layer, N-polar
Related items