Font Size: a A A

Fractal THz slow light metamaterial devices

Posted on:2011-12-23Degree:M.SType:Thesis
University:Oklahoma State UniversityCandidate:Ito, ShoichiFull Text:PDF
GTID:2448390002955173Subject:Engineering
Abstract/Summary:
Scope and Method of Study: The goal of this study is to investigate the time delay of the fractal H metamaterials in the terahertz regime. This metamaterial contains resonators with two different sizes of H structures which mimic Electromagnetically Induced Transparency and create a transmission window and the corresponding phase dispersion, thus producing slow light. The Al structures were fabricated on silicon wafer and Mylar by using microelectronic lithography and thermal evaporation technique. By using terahertz time-domain spectroscopy, the phase change caused by the slow light system and the actual time delay were obtained. Numerical simulations were carried out to systematize the effect of permittivity and structure dimensions on the optical properties.;Findings and Conclusions: We experimentally demonstrated the numerical time delay of the fractal H metamaterial as a slow light device. When permittivity of the substrates increases, the peak position of the transmission window shifts to lower frequency and the bandwidth becomes broader. As a result, silicon performed larger time delay than that of Mylar. By changing the length of the resonator, the bandwidth and the peak position of the transmission window is controllable. At the edges of the transmission window, the negative time delays (fast light) were also observed. Mylar acts as a quaci-free standing structure and allows higher spectral measurement. Moreover, metamaterials fabricated on multiple Mylar films can potentially act as a more effective slow light device. As applications, slow light metamaterials are expected to be used for high-capacity terahertz communication networks, all-optical information processing and sensing devices.
Keywords/Search Tags:Slow light, Time delay, Fractal, Metamaterial, Transmission window
Related items