Font Size: a A A

Ceramide metabolism regulates a neuronal NADPH oxidase influencing neuron survival during inflammation

Posted on:2010-08-26Degree:Ph.DType:Thesis
University:University of Alaska FairbanksCandidate:Barth, Brian MFull Text:PDF
GTID:2444390002985919Subject:Biology
Abstract/Summary:
Inflammation is a major component of acute and chronic pathologies of the central nervous system, including psychiatric disorders. Microglia respond to pathogens, injury, and toxins by secreting inflammatory mediators including pro-inflammatory cytokines in an event known as neuroinflammation. This thesis research investigated a link between neuroinflammation and oxidative stress, and ultimately neurodegeneration. The cytokine tumor necrosis factor alpha was shown to stimulate a neuronal NADPH oxidase (NOX), specifically by stimulating the production of ceramide and ceramide-1-phosphate via Mg 2+-neutral sphingomyelinase (Mg2+-nSMase) and ceramide kinase. Intriguingly, glucosylceramide blocked NOX activation, linking ceramide neutralization directly to a decline in oxidative stress. Most importantly, NOX activity interfered with actin and sphingosine kinase-1 via oxidation, demonstrating a positive and detrimental feedback mechanism that impedes neuronal survival pathways. Interestingly, crude extracts from wild Alaskan bog blueberries showed the ability to interfere with Mg2+-nSMase, demonstrating a specific neuroprotective property of the berry. Altogether, this thesis research defined a key neuronal pathway linking inflammation to oxidative stress via ceramide metabolism, potentially allowing for future therapeutic development to improve neuronal function and survival.
Keywords/Search Tags:Ceramide, Neuronal, Survival, Oxidative stress
Related items