Font Size: a A A

The interactive medical emergency department [iMED]: Architectural integration of digital systems into the emergency care environment

Posted on:2008-08-14Degree:M.ArchType:Thesis
University:Clemson UniversityCandidate:Ruthven, David BenjaminFull Text:PDF
GTID:2442390005970890Subject:Architecture
Abstract/Summary:
In healthcare, the architectural response to the development of information technologies has largely been relegated to a reactive role, essentially waiting for systems to develop and simply accommodating them with appropriately sized spaces.; Dissolving the disconnect between architectural environments and information technology can be achieved by devising architectural elements and treatment protocols which would fuse both entities together, creating a more holistic, digitally integrated setting in which to deliver care. Utilizing advances such as integrated wall interfaces and environmental sensor systems would improve the delivery of care by empowering users and architectural settings with the ability to effectively adapt to changing conditions, increase accessibility to information, and streamline care for improved patient outcomes. Replacing fixed position, single user data entry systems with environmentally integrated surface interfaces would improve flexibility and performance by creating a multitude of localized points to access data, as well as streamline and simplify the environment by eliminating technological clutter.; The emergency care environment was selected as an appropriate vessel to implement the thesis, due to its need for flexibility in order to accommodate ever changing demographic needs, significant volumetric shifts, fast paced care delivery which is dependent on the rapid utilization of information, and high patient turnover rate requiring an efficient throughput processes. Specific problems relevant to contemporary emergency departments were then identified, including overcrowding, staffing issues, and inability to accommodate for volumetric surges, all of which stem from inadequate throughput methodologies. The thesis then explored how the fusion of digital modalities with architectural elements in the emergency care environment would remediate these problems by improving the throughput of the facility.; To ensure the final design holistically satisfies the goal of improving the quality and effectiveness of emergency care through the environmental integration of information technology, a series of design principles were developed to serve as its basis. In order to optimize data flow, access to input areas must be maximized by conceiving the building as an interface, where spatial boundaries become digital connections. If integrated data systems are to be accessible from a universal architectural interface and respond in a safe and controlled manner, digital scanning technologies such as biometrics and RFID tagging must be fused with physical threshold conditions in order to enable the digital system's recognition of its inhabitants. In an additional effort to maintain safety, maximize workability, and ensure a level of sterility in sensitive environments, the facility needs to be designed into layers of penetration, regulating access to only those users who meet proper security clearances. Furthermore, the facility needs to act like a sponge, easily expanding and contracting the layers of penetration in an effort to accommodate unpredictable volumetric increases during mass casualty events. In addition to increasing its capacity, the facility should also be prepared to appropriate adjacent, existing infrastructure for overflow shelter and staging operations during such events.; The programmatic typology of a freestanding medical emergency department, in which there is no connection to an existing facility, was selected with the intention of deriving a pure condition which eliminated extraneous influences from diluting the focus of this thesis on the relationship between information technology and architecture. Although rare in the US, freestanding emergency care facilities are a viable option for expanding healthcare provider's coverage, capturing areas with growing populations, and improving the regional capability to respond effectively during mass casualty events. The base program was derived from...
Keywords/Search Tags:Care, Architectural, Systems, Digital, Information, Environment
Related items