Font Size: a A A

Benefices environnementaux de la cogeneration d'energie en milieu hospitalier et cas de l'Hopital de Moncton

Posted on:2011-08-06Degree:M.ScType:Thesis
University:Universite de Moncton (Canada)Candidate:Kone, DiakaliaFull Text:PDF
GTID:2442390002463586Subject:Engineering
Abstract/Summary:
The present study aimed at assessing the environmental benefits of power management practices based on cogeneration in the particular industrial sector of hospitals and healthcare. Cogeneration power systems, also known as "Combined Heat and Power" (CHP) or Cogen, supply on-site electricity and heat from a single fuel source (natural gas in general). While the efficiency of conventional plants to produce power and heat separately is limited to about 30%, the efficiency of a CHP plant is close to 80% and can reach up to 90% in some applications (Borbely et Kreider, 2001).;The first objective of the study was to outline the main benefits and challenges faced by hospitals that aim at becoming their own energy co-generator, in comparison to having power and heat produced separately. Our second objective was to assess prospectively (proactively) the environmental impacts of a cogeneration plant that is being planned, but not yet operated, in a Canadian hospital.;The methodology was based on literature reviews and on a case study, namely that of The Moncton Hospital (TMH)/L'Hopital de Moncton, Moncton, New Brunswick, Canada. This hospital is considered a large hospital with 375 beds and a major and expanding ambulatory care service. It is also in the process of developing a 1.06 MW cogeneration plant, to be run on natural gas, to meet about 30% of the facility's current demand for electricity and heat. In order to anticipate the environmental consequences of this CHP project, an environmental impact assessment (EIA) was conducted, according to the principles that apply in New Brunswick (Regulation 87-83 on EIA). A literature review was conducted and a matrix approach (matrix of impacts) was used to identify and assess the anticipated environmental impacts.;The study showed that multiple stakeholders in the healthcare sector can reap benefits of CHP deployment. Facility owners can reduce energy costs and increase power reliability to enhance operations' continuity, during normal and extraordinary times (e.g., natural disasters). For instance, when hurricanes Katrina and Rita struck the United States in 2005, hospitals running with CHP were able to provide secure electricity supplies for emergency facilities and shelters. CHP also has environmental benefits related to its distinctively high efficiency. But its deployment in the healthcare sector also provides challenges, mainly due to the fact that power production is not a core activity for an hospital. These challenges can be overcome, however, as shown by numerous success stories in hospitals worldwide; specialised resources are available to help hospitals switch to CHP. This study underlines some of the steps a hospital can take toward this aim.;One of the distinctive features of hospitals is their continuous demand for both type of energy (electricity and heat), which makes them good candidate for cogeneration. However, in North America at the present time, less than 5% of hospitals run on CHP. Most are being supplied with electricity by conventional power plants, run by specialized companies, and use on-site boiler(s) to generate heat. Energy spending can reach up to 3% of an hospital's annual operational budget. There are also environmental impacts related to current energy supply and use in hospitals. For instance, the burning of fossil fuels releases greenhouse gases (GHG), which contribute to human health problems and climate change.;EIA of The Moncton Hospital CHP project suggests that, globally, the environmental impacts of CHP are reduced compared to the traditional production of electricity and heat separately. Cogeneration utilizes fewer resources (fuel) and therefore releases fewer GHG and other pollutants. However, quantifying the emissions avoided is challenging. Also, the environmental benefits of CHP may be less obvious when compared to a centralised nuclear or hydraulic power production, which emits less GHG than power plants operating on coal or fuel oil.;The study also indicates that other conditions are required to increase the environmental gains that can be expected from CHP deployment in the hospital sector. These conditions include the use of renewable fuel sources (biomass), the development of well-structured frameworks (e.g., efficient environmental management systems) to coordinate and leverage environmental stewardship initiatives within hospitals, and the development of energy partnerships (e.g., municipal heat networks). A broad, eco-systemic vision, like the one of industrial ecology, would help strengthen the ecological benefits of cogeneration in the hospital and health care sector.;Key Words Heat and power cogeneration, hospitals, benefits/challenges, environment, society, environmental impact assessment, Canada, sustainable development, industrial ecology.
Keywords/Search Tags:Cogeneration, Hospital, Environmental, Power, Benefits, CHP, Heat, Moncton
Related items