Font Size: a A A

DEMODULATION RADIO FREQUENCY INTERFERENCE EFFECTS IN OPERATIONAL AMPLIFIER CIRCUITS (EMI, NCAP, NONLINEAR TRANSFER FUNCTION)

Posted on:1985-04-17Degree:Ph.DType:Dissertation
University:State University of New York at BuffaloCandidate:SUTU, YUE-HONGFull Text:PDF
GTID:1478390017962320Subject:Electromagnetics
Abstract/Summary:
A series of investigations have been carried out to determine RFI effects in analog circuits using monolithic integrated operational amplifiers (op amps) as active devices. The specific RFI effect investigated is how amplitude-modulated (AM) RF signals are demodulated in op amp circuits to produce undesired low frequency responses at AM-modulation frequency. The undesired demodulation responses were shown to be characterized by a second-order nonlinear transfer function.;The Nonlinear Circuit Analysis Program, NCAP, was used to simulate the demodulation RFI response. In the simulation, the op amp was replaced with its incremental macromodel. Values of macromodel parameters were obtained from previous investigations and manufacturer's data sheets.;Some key results of this work are: (1) The RFI demodulation effects are 10 to 20 dB lower in CA081 and LF355 FET-bipolar op amp than in 741 and LM10 bipolar op amp except above 40 MHz where the LM10 RFI response begins to approach that of CA081. (2) The experimental mean values for 30 741 op amps show that RFI demodulation responses in the inverting amplifier with a 27 pF feedback capacitor were suppressed from 10 to 35 dB over the RF frequency range 0.1 to 150 MHz except at 0.15 MHz where only 3.5 dB suppression was observed. (3) The NCAP program can predict RFI demodulation responses in 741 and LF355 unity gain buffer circuits within 6 and 7 dB respectively for RF frequencies 0.1 to 400 MHz except near the resonant frequencies for the LF355 circuit. (4) The NCAP simulations suggest that the resonances of the LF355 unity gain buffer circuit are related to small parasitic capacitance values of the order of 1 to 5 pF. (5) The NCAP sensitivity analysis indicates that variations in a second-order transfer function are sensitive to some macromodel parameters.;Four representative op amp types investigated were the 741 bipolar op amp, the LM10 bipolar op amp, the LF355 JFET-Bipolar op amp, and the CA081 MOS-Bipolar op amp. Two op amp circuits were investigated. The first circuit was a noninverting unity voltage gain buffer circuit. The second circuit was an inverting op amp configuration. In the second circuit, the investigation includes the effects of an RFI suppression capacitor in the feedback path. Approximately 30 units of each op amp type were tested to determine the statistical variations of RFI demodulation effects in the two op amp circuits.
Keywords/Search Tags:Amp, Circuit, RFI, Effects, Demodulation, NCAP, Transfer function, Frequency
Related items