Font Size: a A A

Analysis of self-pumped optical parametric interaction for neodymium:magnesium oxide:lithium niobate

Posted on:1995-02-18Degree:Ph.DType:Dissertation
University:New Mexico State UniversityCandidate:Prasad, Narasimha SrikantaiahFull Text:PDF
GTID:1468390014989165Subject:Physics
Abstract/Summary:
With the advent of lasers an era in optics began. Initially, lasers were designed and engineered to generate discrete wavelengths. Subsequent research yielded commercially successful solid state lasers with limited tunability. Triggered by the availability of lasers delivering high intensity, extensive research was carried out in experimental nonlinear optics. In the realm of nonlinear optics, parametric interaction or three wave mixing process has attained significant importance. Nonlinear devices such as optical parametric amplifiers (OPAs) and broadly tunable coherent sources known as optical parametric oscillators (OPOs) were developed based on parametric interaction.; Parametric devices normally operate using an intense pump which is external to the device. Currently, research is being conducted to develop highly efficient intra-cavity parametric devices in which the nonlinear crystals is placed inside the laser cavity. Further, advances are being made in semiconductor diode laser (SDL) technology to achieve laser beams of high quality. Considerations include compactness, high efficiency, low power requirements, and cost effectiveness. The desire to replace flash lamps with highly efficient SDLs as optical pump sources and to develop high performance crystalline media have stimulated active areas of research today.; The main objective of the present investigation involves the study of three wave mixing processes due to pump radiation that is generated internally inside a crystalline medium. A medium that offers both stimulated emission and parametric gain i.e., a lasing medium that satisfies all the requirements of a parametric process is considered. One such medium that is identified is Nd:MgO:LiNbO{dollar}sb3{dollar} crystal. This material is established as a lasing material with excellent electro-optic and nonlinear optical properties. Until now efficient lasing action, internal Q-switching, and self-doubling have been demonstrated. In this study, the requirements to achieve parametric interaction is analytically formulated and experimentally demonstrated using Nd:MgO:LiNbO{dollar}sb3{dollar}. The results obtained form a sound basis to subsequent analysis of parametric interaction by a pump radiation that is generated internally in the same crystal.; Using laser theory and principles of optical parametric interaction, the theory of self-pumped optical parametric interaction is formulated. This encompasses, the requirements of an interaction medium, laser pump generation, Q-switching, cavity analysis, and conditions for parametric interaction. Driven by an internally generated laser pump, the specific processes of optical parametic amplification, optical parametric oscillation, and frequency up-conversion are explored. In this study, novel tuning techniques are considered and spectral performance characteristics of these devices are presented. The design architectures of self-pumped OPO, OPA, and frequency up-converter devices using Nd:MgO:LiNbO{dollar}sb3{dollar} crystals are described. It is envisaged that self-pumped parametric devices can outperform present day intra-cavity devices which are bulky and expensive.
Keywords/Search Tags:Parametric, Pump, Laser
Related items