Font Size: a A A

Selected engineering properties and applications of EPS geofoam

Posted on:2001-08-05Degree:Ph.DType:Dissertation
University:State University of New York College of Environmental Science and ForestryCandidate:Elragi, Ahmed FouadFull Text:PDF
GTID:1462390014457594Subject:Engineering
Abstract/Summary:
Expanded polystyrene (EPS) geofoam is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of soil. It has good thermal insulation properties with stiffness and compression strength comparable to medium clay. It is utilized in reducing settlement below embankments, sound and vibration damping, reducing lateral pressure on substructures, reducing stresses on rigid buried conduits and related applications.; This study starts with an overview on EPS geofoam. EPS manufacturing processes are described followed by a review of engineering properties found in previous research work done so far. Standards and design manuals applicable to EPS are presented. Selected EPS geofoam-engineering applications are discussed with examples.; State-of-the-art of experimental work is done on different sizes of EPS specimens under different loading rates for better understanding of the behavior of the material. The effects of creep, sample size, strain rate and cyclic loading on the stress strain response are studied. Equations for the initial modulus and the strength of the material under compression for different strain rates are presented. The initial modulus and Poisson's ratio are discussed in detail. Sample size effect on creep behavior is examined.; Three EPS projects are shown in this study. The creep behavior of the largest EPS geofoam embankment fill is shown. Results from laboratory tests, mathematical modeling and field records are compared to each other. Field records of a geofoam-stabilized slope are compared to finite difference analysis results. Lateral stress reduction on an EPS backfill retaining structure is analyzed.; The study ends with a discussion on two promising properties of EPS geofoam. These are the damping ability and the compressibility of this material. Finite element analysis, finite difference analysis and lab results are included in this discussion. The discussion with the rest of the study points towards the main conclusion that EPS geofoam is the future material of promise in various civil engineering applications.
Keywords/Search Tags:EPS geofoam, Engineering, Material, Applications, Finite difference analysis
Related items