Font Size: a A A

Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

Posted on:2002-10-11Degree:Ph.DType:Dissertation
University:OGI School of Science & EngineeringCandidate:Peter, Geoffrey John MFull Text:PDF
GTID:1461390011990610Subject:Engineering
Abstract/Summary:
With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component.; In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter.; A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect and the solder interconnect. The numerical model simulated using ANSYS program was validated with the numerical/experimental results of other published researchers. In addition the results were cross-checked by IDEAS program. A prototype non-working wire interconnect is proposed to emphasize practical application. The numerical analysis, in this dissertation is based on a U.S. Patent granted to G. Peter(42).
Keywords/Search Tags:CTE mismatch, Numerical, Interconnect, Chip, Thermal, Stress, Wire, Lithography
Related items