Font Size: a A A

Monolithic soft glass single frequency fiber lasers

Posted on:2013-04-29Degree:Ph.DType:Dissertation
University:The University of ArizonaCandidate:Hofmann, PeterFull Text:PDF
GTID:1458390008480401Subject:Physics
Abstract/Summary:
Envisioning novel fully monolithic fiber-optical devices, this dissertation investigates four fiber optical devices both, active and passive, that contribute to the goal of further integrating and miniaturizing fiber optics.;An all phosphate glass fiber laser was designed in an effort to reduce laser intensity noise by reducing cavity losses and low mechanical strength that arise from intra-cavity fusion splices between silica fiber Bragg gratings (FBG) and phosphate active fiber in state of the art phosphate single frequency fiber lasers. Novel phosphate glass based FBGs have been fabricated utilizing high intensity laser pulses at 193 nm and a phase-mask. Net reflectivities of up to 70 % and a bandwidth of 50 pm have been achieved in the FBGs. The laser design comprised two of the novel FBGs and a short section of Er3+Yb3+ phosphate fiber to form a distributed Bragg reflector (DBR) laser. The performance of the new laser has been compared to a conventional phosphate fiber laser. Particular focus was put on the laser intensity noise due to its dependence on intra-cavity losses. Relative intensity noise (RIN) amplitudes of -80 dB/Hz have been measured for both lasers when operating at comparable output powers. For similar levels of absorbed pump power the relaxation oscillation frequencies (ROF) were shifted towards lower frequencies in the new laser. Excess FBG scattering losses and mode-field miss-match between the active and passive fiber limited the output power of the new laser to 16 mW compared to 140 mW in the conventional laser.;A monolithic all-phosphate glass fiber laser with up to 550 mW output power that is operating at a single longitudinal mode and exhibiting narrow linewidth is presented. The laser cavity has been formed by inscribing FBGs directly into heavily Er3+Yb 3+ doped phosphate glass fiber using femtosecond laser pulses and a phase mask, completely eliminating the need for intra-cavity fusion splices. A linewidth of less than 60 kHz and relaxation oscillation peak amplitudes below -100 dB/Hz without active suppression of RIN have been measured. The compact form factor and higher output power combined with the low noise and narrow linewidth characteristic make this laser an ideal candidate for ranging, interferometry and sensing applications.;Strong and robust Bragg gratings in optical fiber fabricated from highly photosensitive photo-thermo-refractive (PTR) glass are demonstrated. The fibers were drawn at 900 °C from a machined PTR-glass preform. A low power two beam interference pattern from a continuous wave (cw) He-Cd laser with a wavelength of 325 nm was used to write gratings into the fibers, achieving peak grating strengths of 20 dB and a spectral width of 45 pm. The gratings showed no sign of degradation when exposed to a high temperature environment of 425 ° C for several hours. This is significantly higher when compared to standard Telecom FBGs which are rated for operation temperatures below 200 °C.;A detailed study of novel mode-field adapters (MFA) based on multi-mode interference in graded index multi-mode fibers (GIMF) is presented. MFAs are often used in cases when low coupling losses between single mode fibers with very different mode-field diameters are needed. Here a new type of MFAs has been fabricated and characterized from a selection of commercially available single mode and graded index fibers. Compared to existing techniques the presented MFAs can be fabricated very quickly and are not limited to certain fiber types. Insertion losses of l0:5 dB over a spectral range of several hundred nm have been obtained with an ultra compact MFA with a length of 275 mum.
Keywords/Search Tags:Fiber, Laser, Glass, Monolithic, Single, Active, Novel
Related items