Font Size: a A A

On chip frequency comb: Characterization and optical arbitrary waveform generation

Posted on:2013-08-03Degree:Ph.DType:Dissertation
University:Purdue UniversityCandidate:Ferdous, FahmidaFull Text:PDF
GTID:1458390008472995Subject:Engineering
Abstract/Summary:
Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh quality factor monolithic micro-resonators have been demonstrated. In these methods, two pump photons are transformed into sideband photons in a four wave mixing process mediated by the Kerr nonlinearity. The essential advantages of these methods are simplicity, small size, very high repetition rates and sometimes CMOS compatibility. We investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We demonstrate a simple example of optical arbitrary waveform generation (OAWG) from Kerr comb. We observe two distinct paths to comb formation which exhibit strikingly different time domain behaviors. For combs formed as a cascade of sidebands spaced by a single free spectral range (FSR) that spread from the pump, we are able to compress to nearly bandwidth limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple FSRs which then fill in to give combs with single FSR spacing, the time domain data reveal partially coherent behavior. We also investigate the behaviors of a few sub-families of the partially coherent combs selected by a pulse shaper. We observe different coherence properties for different groups of comb lines. Furthermore we will discuss an ultrafast characterization techniques called dual comb electric eld cross correlation. This linear technique will provide both low optical power and broader bandwidth capability for full time domain characterization of OAWG from Kerr comb.
Keywords/Search Tags:Comb, Optical, Characterization, Time domain
Related items