Font Size: a A A

Early Outgrowth Cells As A Novel Therapy For Chronic Kidney Disease

Posted on:2012-02-23Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Yuen, Darren A Vee-YipFull Text:PDF
GTID:1454390008996317Subject:Health Sciences
Abstract/Summary:
Chronic kidney disease (CKD) and its cardiac complications represent a large and growing problem in Canada. The progression of CKD is driven by the activation of several final common pathways of injury, including fibrosis and oxidative stress. If left unchecked, these inter-connected processes lead to progressive damage and subsequent organ dysfunction. Current clinical therapies, consisting of aggressive blood pressure control and blockade of the renin-angiotensin system, fail to arrest this progressive injury in a significant number of patients.;Early outgrowth cells (EOCs) represent a novel bone marrow-derived cell population that have been recently described to have tissue protective activity. In this work, we examined the effects of intravascular EOC infusion in two independent models of CKD, demonstrating potent anti-fibrotic renoprotective effects in the subtotally nephrectomized (SNX) rat, a well-established model of non-diabetic progressive CKD, and anti-fibrotic and anti-oxidant effects in the db/db mouse, a commonly used model of type 2 diabetic nephropathy. In the SNX rat, which is characterized by impaired cardiac relaxation reminiscent of a common and high risk clinical CKD phenotype, EOC infusion was also associated with improved cardiac structure and function. In both cases, infused EOCs were not retained in significant numbers within the diseased kidney or heart, but rather localized to distant organs such as the liver, spleen, and bone marrow. We further demonstrated that EOCs release soluble factors with anti-oxidant and anti-fibrotic activity in vitro, and that a cell-free preparation of EOC-derived factors can mimic the reno- and cardiac protective effects of the cells themselves when infused into the SNX rat.;Taken together, our results demonstrate the therapeutic potential of an EOC-based strategy for the treatment of CKD and its cardiac complications, and provide the preclinical rationale for the design of clinical trials of EOC-based therapies for this devastating disease.
Keywords/Search Tags:CKD, Cardiac, Kidney, Cells
Related items