Font Size: a A A

Aeroacoustic prediction of turbulent free shear flows

Posted on:2006-02-12Degree:Ph.DType:Dissertation
University:Stanford UniversityCandidate:Bodony, Daniel JosephFull Text:PDF
GTID:1452390008466330Subject:Engineering
Abstract/Summary:
For many people living in the immediate vicinity of an active airport the noise of jet aircraft flying overhead can be a nuisance, if not worse. Airports, which are held accountable for the noise they produce, and upcoming international noise limits are pressuring the major airframe and jet engine manufacturers to bring quieter aircraft into service. However, component designers need a predictive tool that can estimate the sound generated by a new configuration. Current noise prediction techniques are almost entirely based on previously collected experimental data and are applicable only to evolutionary, not revolutionary, changes in the basic design. Physical models of final candidate designs must still be built and tested before a single design is selected.; By focusing on the noise produced in the jet engine exhaust at take-off conditions, the prediction of sound generated by turbulent flows is addressed. The technique of large-eddy simulation is used to calculate directly the radiated sound produced by jets at different operating conditions. Predicted noise spectra agree with measurements for frequencies up to, and slightly beyond, the peak frequency. Higher frequencies are missed, however, due to the limited resolution of the simulations.; Two methods of estimating the 'missing' noise are discussed. In the first a subgrid scale noise model, analogous to a subgrid scale closure model, is proposed. In the second method the governing equations are expressed in a wavelet basis from which simplified time-dependent equations for the subgrid scale fluctuations can be derived. These equations are inexpensively integrated to yield estimates of the subgrid scale fluctuations with proper space-time dynamics.
Keywords/Search Tags:Subgrid scale, Noise, Prediction
Related items