Font Size: a A A

Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

Posted on:2014-12-07Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Carstens, Thomas AlanFull Text:PDF
GTID:1452390008459521Subject:Engineering
Abstract/Summary:
This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment.;OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency.;The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the thermoelectric voltage, DC/DC converter voltage, relative signal strength indicator, and counter number were measured and compared.;The analysis estimates that a thermoelectric generator can produce enough power for a wireless sensor to function and transmit data from inside the dry-cask throughout its service life and beyond. Some of the electronics for the wireless sensor need to be properly protected to ensure it will function in an extreme environment.
Keywords/Search Tags:Wireless sensor, Power, Dry-cask, Thermoelectric, DC/DC converter
Related items