Font Size: a A A

A Risk Management Framework to Characterize Black Swan Risks: A Case Study of Lightning Effects on Insensitive High Explosives

Posted on:2014-02-14Degree:Ph.DType:Dissertation
University:The George Washington UniversityCandidate:Sanders, Gary AFull Text:PDF
GTID:1452390005489077Subject:Engineering
Abstract/Summary:
Effective and efficient risk management processes include the use of high fidelity modeling and simulation during the concept exploration phase as part of the technology and risk assessment activities, with testing and evaluation tasks occurring in later design development phases. However, some safety requirements and design architectures may be dominated by the low probability/high consequence "Black Swan" vulnerabilities that require very early testing to characterize and efficiently mitigate. Failure to address these unique risks has led to catastrophic systems failures including the space shuttle Challenger, Deepwater Horizon, Fukushima nuclear reactor, and Katrina dike failures. Discovering and addressing these risks later in the design and development process can be very costly or even lead to project cancellation. This paper examines the need for risk management process adoption of early hazard phenomenology testing to inform the technical risk assessment, requirements definition and conceptual design. A case study of the lightning design vulnerability of the insensitive high explosives being used in construction, mining, demolition, and defense industries will be presented to examine the impact of this vulnerability testing during the concept exploration phase of the design effort. While these insensitive high explosives are far less sensitive to accidental initiation by fire, impact, friction or even electrical stimuli, their full range of sensitivities have not been characterized and ensuring safe engineering design and operations during events such as lightning storms requires vulnerability testing during the risk assessment phase.
Keywords/Search Tags:Risk, Insensitive high, Lightning, Phase, Testing
Related items