Font Size: a A A

Spatially-resolved temperature diagnostic for supersonic flow using cross-beam Doppler-limited laser saturation spectroscopy

Posted on:2007-09-06Degree:Ph.DType:Dissertation
University:Air Force Institute of TechnologyCandidate:Phillips, Grady TFull Text:PDF
GTID:1448390005478777Subject:Physics
Abstract/Summary:
Optical techniques for measuring the temperature in three-dimensional supersonic reactive flows have typically depended on lineshape measurements using single-beam laser absorption spectroscopy. However, absorption over extended path lengths in flows with symmetric, turbulent eddies can lead to systematically high extracted temperatures due to Doppler shifts resulting from flow along the absorption path. To eliminate these problems and provide full three-dimensional spatial resolution, two variants of laser saturation spectroscopy have been developed and demonstrated, for the first time, which utilize two crossed and nearly copropogating laser beams. Individual rotational lines in the visible I2 X 1Sigma 0+g → B 3pi 0+u transition were used to develop the two diagnostic to support research on the Chemical Oxygen-Iodine Laser (COIL), the weapon aboard the USAF Airborne Laser. Cross-Beam Saturation Absorption Spectroscopy (CBSAS) and Cross-Beam Inter-Modulated Fluorescence (CBIMF) were demonstrated as viable methods for recording the spectral signal of an I2 ro-vibrational line in a small three-dimensional volume using a tunable CW dye laser. Temperature is extracted by fitting the recorded signal with a theoretical signal constructed from the Doppler-broadened hyperfine components of the ro-vibrational line.;The CBIMF technique proved successful for extracting the temperature of an I2-seeded, Ar gas flow within a small, Mach 2, Laval nozzle where the overlap volume of the two 1 mm diameter laser beams was 2.4 mm 3. At a test point downstream of the nozzle throat, the average temperature of 146 K +/- 1.5 K extracted from measurements of the I2 P(46) 17-1 spectral line compared favorably with the 138 K temperature calculated from isentropic, one-dimensional flow theory. CBIMF provides sufficient accuracy for characterizing the temperature of the gas flow in a COIL device, and could be applied to other areas of flow-field characterization and nozzle design. In contrast, the CBSAS signal was not sufficiently strong for reliable temperature extraction from the 2.4 mm3 overlap volume required in the nozzle experiments. Otherwise, the CBSAS technique could have greater success for application in flow field test environments that allow the use of a larger overlap-volume.;CBIMF and CBSAS measurements were also made in a static cell at 293 K. At 50 mTorr of I2, the standard error in temperature from CBIMF measurements of the I2 P(46) 17-1 line was approximately 0.5 K. For CBSAS, the standard error in temperature was approximately 3 K at 50 mTorr of I2. Accuracy improved with increasing I2 pressure. In addition, the spatial-resolution capability of CBIMF and CBSAS was demonstrated in a static cell with an applied temperature gradient ranging from 300 to 365 K. Extracted temperatures were compared to thermocouple measurements at multiple positions in the gradient. Agreement between extracted temperatures and thermocouple measurements was better at the lower temperatures.;Doppler-free measurements of several I2 hyperfine spectra were also performed to support development of the theoretical model. Saturation Absorption Spectroscopy was used to obtain Ar pressure broadening rates of 8.29 +/- 0.30 MHz/Torr for the I2 P(70) 17-1 hyperfine spectrum, and 10.70 +/- 0.41 MHz/Torr for the I2 P(10) 17-1 hyperfine spectrum.
Keywords/Search Tags:Temperature, Laser, Flow, Using, Measurements, CBIMF, CBSAS, Spectroscopy
Related items