Font Size: a A A

Semiconductor-metal nanostructures: Scanning tunneling microscopy investigation of the fullerene-gold and manganese-germanium-silicon system

Posted on:2009-03-19Degree:Ph.DType:Dissertation
University:University of VirginiaCandidate:Liu, HuiFull Text:PDF
GTID:1441390005458713Subject:Engineering
Abstract/Summary:
Nanostructures, assembled from a layer or cluster of atoms with size of the order of nanometers, have attracted much attention for decades, because it has been widely recognized that the properties of nanoscale materials are remarkably different from those of materials of large scale. As one of the most powerful techniques, Scanning Tunneling Microscopy (STM) has become an indispensable technique for studies in nanotechnology. This dissertation is focused on the investigation of the C60-Au system, which is relevant in photovoltaic applications and organic electronic devices, and the Mn-Ge-Si system which is central to the development of advanced spintronics system.; The first part of the dissertation focuses on the C60-Au system. Exploring how fullerene molecules interact physically and electronically with each other and with other elements is highly relevant to the advancement of fullerene-based nanotechnology applications. The initial growth stage of C 60 thin film on graphite substrate has been investigated by STM at room temperature. It is observed that the C60 layer grows in a quasi-layer-by-layer mode and forms round 1st layer islands on the graphite surface. The fractal-dendritic growth of the 2nd layer islands has been successfully described by a combination of Monte Carlo simulation and molecular dynamics simulations. As a next step towards the application of fullerenes in device structures, the growth mechanisms of Au clusters on fullerene layers and co-deposition of Au and C60 were explored. The most prominent features of the growth of Au on C60 are the preferential nucleation of Au clusters at the graphite-first fullerene layer islands edge and the co-deposition of C60 and Au on graphite leading to the formation of highly organized structures, in which Au clusters are embedded in a ring of fullerene molecules with a constant width of about 4 nm.; The second part of this dissertation concentrates on the Mn-Ge-Si system, a semiconductor/metal system, which is a potential building-block structure for the development of complex spin-electronic devices. In recent years the study of thin film magnetic materials and the doping of semiconductors with magnetically active dopant atoms has received increased attention due their potential applications in magnetic memory devices and spintronics. In particular, the importance of Mn-Ge-Si system emerges since it combines a technically relevant semiconductor surface with a metallic element with a large magnetic moment. The goal in this part is the early growth stage of Mn on a Si (100) 2x1surface, the formation of Mn-nanostructure and the interaction between Mn and Ge on the Si surface. The position of Mn atoms with respect to Si surface has been determined by high resolution STM images. It is found that Mn adatoms form relatively short monoatomic wires, with a typical length of 5 to about 20 atoms, which are oriented perpendicular to the Si-dimer rows. And at the same time, the modification of Si surface around Mn wires was observed. The formation of Mn silicide after annealing the sample was also studied. The stability of Mn wires during the growth of a Ge overlayer was investigated by comparing several STM images, which were taken at different bias voltages. Because of the different local density of states, Mn and Ge may be partially distinguished in STM images. It is turned out that Mn wires preserve their structures after the deposition of a small amount of Ge on the sample. And the growth of Ge at the early stage on Si surface has not been significantly influenced by the presence of Mn adatoms.; In summary, an investigation of two semiconductor-metal nanostructures by STM has been reported in this dissertation.
Keywords/Search Tags:Structures, STM, System, Investigation, Atoms, Fullerene, Layer, Si surface
Related items