Font Size: a A A

Resource discovery for arbitrary scale system

Posted on:2018-02-25Degree:Ph.DType:Thesis
University:Universidade de Aveiro (Portugal)Candidate:Zarrin, JavadFull Text:PDF
GTID:2478390020956812Subject:Computer Science
Abstract/Summary:
Large scale distributed computing technologies such as Cloud, Grid, Cluster and HPC supercomputers are progressing along with the revolutionary emergence of many-core designs (e.g. GPU, CPUs on single die, supercomputers on chip, etc.) and significant advances in networking and interconnect solutions. In future, computing nodes with thousands of cores may be connected together to form a single transparent computing unit which hides from applications the complexity and distributed nature of these many core systems. In order to efficiently benefit from all the potential resources in such large scale many-core-enabled computing environments, resource discovery is the vital building block to maximally exploit the capabilities of all distributed heterogeneous resources through precisely recognizing and locating those resources in the system. The efficient and scalable resource discovery is challenging for such future systems where the resources and the underlying computation and communication infrastructures are highly-dynamic, highly-hierarchical and highly-heterogeneous. In this thesis, we investigate the problem of resource discovery with respect to the general requirements of arbitrary scale future many-core-enabled computing environments. The main contribution of this thesis is to propose Hybrid Adaptive Resource Discovery (HARD), a novel efficient and highly scalable resource-discovery approach which is built upon a virtual hierarchical overlay based on self-organization and self-adaptation of processing resources in the system, where the computing resources are organized into distributed hierarchies according to a proposed hierarchical multi-layered resource description model. Operationally, at each layer, it consists of a peer-to-peer architecture of modules that, by interacting with each other, provide a global view of the resource availability in a large, dynamic and heterogeneous distributed environment. The proposed resource discovery model provides the adaptability and flexibility to perform complex querying by supporting a set of significant querying features (such as multi-dimensional, range and aggregate querying) while supporting exact and partial matching, both for static and dynamic object contents. The simulation shows that HARD can be applied to arbitrary scales of dynamicity, both in terms of complexity and of scale, positioning this proposal as a proper architecture for future many-core systems. We also contributed to propose a novel resource management scheme for future systems which efficiently can utilize distributed resources in a fully decentralized fashion. Moreover, leveraging discovery components (RR-RPs) enables our resource management platform to dynamically find and allocate available resources that guarantee the QoS parameters on demand.
Keywords/Search Tags:Resource, Scale, Distributed, Computing, Arbitrary
Related items