Font Size: a A A

Vortex dynamics in ruptured and unruptured intracranial aneurysms

Posted on:2015-09-13Degree:M.SType:Thesis
University:State University of New York at BuffaloCandidate:Trylesinski, GabrielFull Text:PDF
GTID:2474390020950665Subject:Engineering
Abstract/Summary:
Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with the current hypothesized biological triggers of pathological remodeling of the artery walls. Having a good natural ratio of statuses in our IA cohort (55 unruptured vs. 19 ruptured), we were able to test the statistical significance of our predictor to fortify our findings. We also performed a distribution analysis of our cohort with respect to the number of WKV to strengthen the encouraging statistical analysis result; both analyses provided a clear good separation of the status of the aneurysms based on our predictor. Lastly, we constructed a receiver operating characteristic (ROC) curve to analyze the power different thresholds of WKV had in splitting the data in a binary way (unruptured/ruptured). The number of WKV was efficaciously able to stratify the rupture status, identifying 84.21 % of the ruptured aneurysms (with 25.45 % of false positives, i.e. unruptured IAs tagged as ruptured) when using a threshold value of 2. Our novel work undertaken to study the vortex structures in IAs brought to light interesting characteristics of the flow in the aneurysmal sac. We found that there are several distinct categories in which the aneurysm vortex topologies can be put in without relationship to the aneurysm rupture status. This first finding was in contradiction with available already-published results. Nonetheless, ruptured IAs had a statistically significant larger amount of WKV as opposed to unruptured aneurysms. This new predictor we propose to the community could very well clear a new path among the currently controversial WSS-based parameters. Although it needs to be improved to be more resilient, the first results obtained by the WKV-based parameter are promising when applied to a large dataset of 74 IAs patient-specific transient CFD simulations.
Keywords/Search Tags:Aneurysms, Ruptured, Ias, WKV, Vortex
Related items