Font Size: a A A

Coarse-grained DNA modeling: Hybridization and ionic effects

Posted on:2015-12-17Degree:Ph.DType:Thesis
University:The University of Wisconsin - MadisonCandidate:Hinckley, Daniel MFull Text:PDF
GTID:2472390017999926Subject:Physics
Abstract/Summary:
Deoxyribonucleic acid (DNA) is a biopolymer of enormous significance in living systems. The utility of DNA in such systems is derived from the programmable nature of DNA and its unique mechanical properties. Recently, material scientists have harnessed these properties in order to create systems that spontaneous self-assemble on the nanoscale. Both biologists and material scientists are hindered by an incomplete understanding of the physical interactions that together govern DNA's behavior. Computer simulations, especially those at the coarse-grained (CG) level, can potentially complete this understanding by resolving details indiscernible with current experimental techniques. In this thesis, we advance the state-of-the-art of DNA CG simulations by first reviewing the relevant theory and the evolution of CG DNA models since their inception. Then we present 3SPN.2, an improved CG model for DNA that should provide new insights into biological and nanotechnological systems which incorporate DNA. We perform forward flux sampling simulations in order to examine the effect of sequence, oligomer length, and ionic strength on DNA oligomer hybridization. Due to the limitations inherent in continuum treatments of electrostatic interactions in biological systems, we generate a CG model of biological ions for use with 3SPN.2 and other CG models. Lastly, we illustrate the potential of 3SPN.2 and CG ions by using the models in simulations of viral capsid packaging experiments. The models and results described in this thesis will be useful in future modeling efforts that seek to identify the fundamental physics that govern behavior such as nucleosome positioning, DNA hybridization, and DNA nanoassembly.
Keywords/Search Tags:Hybridization, Systems, CG model
Related items