Font Size: a A A

Mobile docking of REMUS-100 equipped with USBL-APS to an unmanned surface vehicle: A performance feasibility study

Posted on:2015-12-19Degree:M.SType:Thesis
University:Florida Atlantic UniversityCandidate:Miranda, Mario, IIFull Text:PDF
GTID:2472390017498898Subject:Physics
Abstract/Summary:
The overall objective of this work is to evaluate the ability of homing and docking an unmanned underwater vehicle (Hydroid REMUS 100 UUV) to a moving unmanned surface vehicle (Wave-Adaptive Modular Surface Vehicle USV) using a Hydroid Digital Ultra-Short Baseline (DUSBL) acoustic positioning system (APS), as a primary navigation source. An understanding of how the UUV can rendezvous with a stationary USV first is presented, then followed by a moving USV. Inherently, the DUSBL-APS is susceptible to error due to the physical phenomena of the underwater acoustic channel (e.g. ambient noise, attenuation and ray refraction). The development of an APS model has allowed the authors to forecast the UUV's position and the estimated track line of the USV as determined by the DUSBL acoustic sensor. In this model, focus is placed on three main elements: 1) the acoustic channel and sound ray refraction when propagating in an inhomogeneous medium; 2) the detection component of an ideal DUSBL-APS using the Neyman-Pearson criterion; 3) the signal-to-noise ratio (SNR) and receiver directivity impact on position estimation. The simulation tool is compared against actual open water homing results in terms of the estimated source position between the simulated and the actual USBL range and bearing information.
Keywords/Search Tags:Vehicle, Unmanned, USV
Related items