Font Size: a A A

Exploration of new technologies for nanotransfer and nanocatalysts

Posted on:2015-08-16Degree:Ph.DType:Thesis
University:University of Massachusetts LowellCandidate:Unlu, IlyasFull Text:PDF
GTID:2471390017989840Subject:Chemistry
Abstract/Summary:
This dissertation aims at developing methods for transferring nanoelements from a template to a substrate over large areas and for conveniently fabricating supported gold nanoparticle catalysts. The transfer method relies on the light-induced wettability conversion behavior of some transition metal oxides (e.g., titanium dioxide) such that their surfaces become hydrophilic/amphiphilic upon UV irradiation. In principle, this could allow hydrophilic nanoelements to be pulled off by attractive forces to a photo-activated metal oxide substrate. This method could preserve nanotemplates for further use because there is no physical contact between it and the substrate surface.;To lay the groundwork for light-induced transfer, force-distance (F-D) measurements using an atomic force microscope (AFM) were carried out to investigate the adhesion of gold nanoparticles on bare and self-assembled monolayer (SAM)-covered quartz surfaces. Silane and thiol SAMs were prepared through solution and vapor deposition methods and characterized via different techniques, including x-ray photoelectron spectroscopy (XPS), AFM and water contact angle measurements. The colloidal probe technique, using hydrophilic Au nanoparticle-coated-probes, is highly sensitive toward SAM quality and exhibited higher adhesive forces on fluorinated quartz than on bare quartz due to surface defects of the SAM. Thus, SAM quality, including molecular orientation, plays a crucial role in determining adhesion of Au NPs, and it was found that defects cause a fluorinated surface to be more adhesive to hydrophilic nanoparticles. Potential methods for enabling the light-induced transfer of nanoelements were also explored. While successful transfer was not an outcome of this thesis, the knowledge learned may enable future researchers to accomplish this high-risk/high payoff goal.;In the second half of this thesis, gold nanoparticles (Au NPs) with pre-determined sizes for effective catalysis were attached to a ZnO nanorod (NR) support using a dithiol linker However, this approach leaves organic ligands on the Au NPs and ZnO NRs, which will interfere with the catalytic properties. Therefore, to remove the ligands, the composites were treated with heat and ozone to activate their catalytic properties. The thermal treatment led to aggregation of Au NPs, which resulted in larger sized and differently shaped Au NPs, however, UV-Ozone treatment did not change the size and shape of the NPs, but it removed the ligands. However, it was not as efficient as thermal treatment. The advantages/disadvantages of different dithiol linkers were investigated. Finally, these AuNP/NR composites were successfully used to photocatalyze the degradation of an organic dye, Rhodamine B.
Keywords/Search Tags:Transfer, Au nps, SAM
Related items