Font Size: a A A

Molecules and metals in the distant universe: Sub-mm and optical spectroscopy of quasar absorbers

Posted on:2016-04-22Degree:M.SType:Thesis
University:University of South CarolinaCandidate:Morrison, Sean StephenFull Text:PDF
GTID:2471390017981635Subject:Astronomy
Abstract/Summary:
In order to gain a complete understanding of galaxy formation and evolution, knowledge of the atomic and molecular gas in the interstellar medium (ISM) is required. Absorption-line spectroscopy of quasars offer a powerful and luminosity independent probe of gas to high redshifts. The sub-Damped Lyman-alpha systems (sub-DLAs; 19.0 < log NHI < 20.3), and Damped Lyman-alpha systems (DLAs; 20.3 < log NHI), are the highest neutral hydrogen column density quasar absorbers contain most of the neutral gas available for star formation in the high-redshift Universe.;This thesis presents photometric measurements of 10 quasars absorbers with redshifts 0.652 < zabs < 3.104 taken with the Spectral and Photometric Imaging Receiver (SPIRE) on Herschel. Of these 10 objects, 3 showed fluxes > 1 Jy. In addition spectra for 5 other quasars with DLAs (0.524 < zabs < 1.173) were taken with SPIRE and Heterodyne Instrument for the far-infrared (HIFI) on Herschel. These observations, in the far-IR and sub-mm bands, were optimized for detection of molecular lines of CO, 13CO, C 18O, H2O, HCO, and the forbidden transitions of [C II] and [N II]. Two targets, the DLA towards PKS0420-014 at z = 0.633 and the DLA towards AO0235+164 at z = 0.524, had a tentative detection of C18O, and another, the DLA towards TXS0827+243 at z = 0.52476, had a tentative detection of HCO. There were a number of other 3 sigma limits, with at least one limit for each of the 5 systems.;In addition to the DLAs, 2 super-DLAs (with z = 2.5036 and z = 2.045) were observed using the echellette mode on Keck Echellette Spectrograph and Imager (ESI). These observations, in the optical and ultraviolet wavelengths, were optimized to detect metal lines. Both absorbers show remarkably similar metallicities of ~ -1.3 to ~ -1.4 dex and comparable, definitive depletion levels, as judged from [Fe/Zn] and [Ni/Zn]. One of the absorbers shows supersolar [S/Zn] and [Si/Zn]. Using potential detections of weak Ly-alpha emission at the bottom of the DLA trough for Q0230-0334, we estimate star formation rates in the absorbers to be ~1.6 M [solar masses] yr-1. Finally, measurements of the absorption line velocity spread Deltav90 suggest that super-DLAs may have narrower velocity dispersions and may arise in cooler and/or less turbulent gas.
Keywords/Search Tags:Gas, DLA, Absorbers
Related items