Font Size: a A A

Mechanistic understanding of the effects of natural gas development on sagebrush-obligate songbird nest predation rates

Posted on:2015-12-03Degree:M.SType:Thesis
University:University of WyomingCandidate:Hethcoat, Matthew GFull Text:PDF
GTID:2470390017995184Subject:Agriculture
Abstract/Summary:
Natural gas development has rapidly increased within sagebrush ( Artemisia spp.) dominated landscapes of the Intermountain West. Prior research in the Upper Green River Basin, Wyoming demonstrated increased nest predation of sagebrush-obligate songbirds with higher densities of natural gas wells. To better understand the mechanisms underlying this pattern, I assessed this commonly used index of oil and gas development intensity (well density) for estimating habitat transformation and predicting nest survival for songbirds breeding in energy fields during 2008- 2009 and 2011-2012. We calculated landscape metrics (habitat loss, amount of edge, patch shape complexity, and mean patch size) to identify the aspect of landscape transformation most captured by well density. Well density was most positively associated with the amount of habitat loss within 1 square kilometer. Daily nest survival was relatively invariant with respect to well density for all three species. In contrast, nest survival rates of all three species consistently decreased with increased surrounding habitat loss due to energy development. Thus, although well density and habitat loss were strongly correlated, at times they provided contrasting estimates of nest survival probability. Additionally, we tested the hypothesis that surrounding habitat loss influenced local nest predation rates via increased predator activity. During 2011- 2012, we surveyed predators and monitored songbird nests at twelve sites in western Wyoming. Nine species, representing four mammalian and three avian families, were video-recorded depredating eggs and nestlings. Approximately 75% of depredation events were caused by rodents. While chipmunk (Tamias minimus) detections were negatively associated with increased habitat loss, mice (Peromyscus maniculatus and Reithrodontomys megalotis) and ground squirrels (Ictidomys tridecemlineatus and Urocitellus armatus) increased with greater surrounding habitat loss. Consistent with our predictions, nest survival significantly declined at study locations with greater predator activity for Brewer's Sparrows (Spizella breweri) and Sagebrush Sparrows (Artemisiospiza nevadensis ). Our work is among the few studies which have identified mechanisms underlying increased nest predation rates, linking predation patterns, nest predators, and human-induced habitat alteration. Our results demonstrate the importance of simultaneous study of habitat change, predators, and prey in understanding the mechanisms by which evolved predator-prey relationships can be affected by human-induced rapid environmental change.
Keywords/Search Tags:Gas development, Nest, Habitat loss, Increased, Rates
Related items