Font Size: a A A

Understanding Climate Change and Sea Level: A Case Study of Middle School Student Comprehension and An Evaluation of Tide Gauges off the Panama Canal in the Pacific Ocean and Caribbean Sea

Posted on:2016-11-25Degree:M.SType:Thesis
University:University of South FloridaCandidate:Millan-Otoya, Juan CFull Text:PDF
GTID:2470390017977699Subject:Science Education
Abstract/Summary:
The present study had two main objectives. The first was to determine the degree of understanding of climate change, sea level and sea level rise among middle school students. Combining open-ended questions with likert-scaled questions, we identified student conceptions on these topics in 86 students from 7th and 8th grades during 2012 and 2013 before and after implementing a Curriculum Unit (CU). Additional information was obtained by adding drawings to the open-ended questions during the second year to gauge how student conceptions varied from a verbal and a visual perspective. Misconceptions were identified both pre- and post-CU among all the topics taught. Students commonly used climate and climate change as synonyms, sea level was often defined as water depth, and several students failed to understand the complexities that determine changes in sea level due to wind, tides, and changes in sea surface temperature. In general, 8th grade students demonstrated a better understanding of these topics, as reflected in fewer apparent misconceptions after the CU. No previous study had reported such improvement. This showed the value of implementing short lessons. Using Piaget's theories on cognitive development, the differences between 7th and 8th grade students reflect a transition to a more mature level which allowed students to comprehend more complex concepts that included multiple variables.;The second objective was to determine if the frequency of sea level maxima not associated with tides over the last 100 years increased in two tide gauges located on the two extremes of the Panama canal, i.e. Balboa in the Pacific Ocean and Cristobal in the Caribbean Sea. These records were compared to time series of regional sea surface temperature, wind speed, atmospheric pressure, and El Nino-Southern Oscillation (ENSO), to determine if these played a role as physical drivers of sea level at either location. Neither record showed an increase in the frequency of sea level maxima events. No parameter analyzed explained variability in sea level maxima in Cristobal. There was a significant correlation between the zonal component of the wind and sea level at Balboa for the early record (r=0.153; p-value<0.05), but for the most part the p-values did not support the hypothesis of a correlation. Similarly, sea surface temperature had an effect on sea level at Balboa, but the null hypothesis that there is no correlation could not be rejected (p-value>0.05). There was a clear relationship between sea level maxima and ENSO. 70% of the years with higher counts of higher sea level events corresponded to El Nino years. A randomization test with 1000 iterations, shuffling the El Nino years, showed most of these randomizations grouped between 14-35% of the events occurring during a randomized El Nino year. In no iteration did the percentage of events that occurred during El Nino years rise above 65%. The correlation with zonal wind and the probable correlation with sea surface temperature can be linked via ENSO, since ENSO is associated with changes in the strength of the Trade Winds and positive anomalies in the sea surface temperature of the tropical Pacific Ocean.
Keywords/Search Tags:Sea, Climate change, Pacific ocean, Understanding, El nino years, Student, Determine, ENSO
Related items