Font Size: a A A

The artificial synapse chip: From proteins to prostheses

Posted on:2004-01-14Degree:Ph.DType:Thesis
University:Stanford UniversityCandidate:Peterman, Mark CharlesFull Text:PDF
GTID:2464390011962649Subject:Physics
Abstract/Summary:
Most retinal prostheses use an electric field to stimulate retinal circuitry, yet information transfer in the retina is primarily through neurotransmitters. To address this difference, this thesis describes a proof of concept retinal interface based on localized chemical delivery. This system, the Artificial Synapse Chip, is based on a 5 μm aperture in a silicon nitride membrane overlying a microfluidic channel. The effectiveness of this interface is demonstrated by ejecting bradykinin on cultured excitable cells. Even with manual fluidic control, the relationship between the extent of stimulation and concentration is linear, providing enough control to limit stimulation to individual cells.; A neurotransmitter-based prosthesis will require advanced fluidic control. This thesis reports the use of electroosmosis to eject or withdraw fluid from an aperture in a channel wall. This effect is demonstrated experimentally, and numerically, using a finite-element method. Our primary device is a prototype interface with four individually addressable apertures in a 2 x 2 array. Using this array, we demonstrate stimulation of both PC12 and retinal ganglion cells. This demonstration of localized chemical stimulation of excitable cells illustrates the potential of this technology for retinal prostheses.; As a final application of the Artificial Synapse Chip, we applied the concept to lipid bilayer membranes and membrane-bound proteins. Not only are membrane-bound proteins crucial to the function of biological synapses, but also are important from a technological point of view. In this thesis, we use a Langmuir-Blodgett technique to producing lipid bilayers across apertures in a modified version of the Artificial Synapse Chip. These bilayers display many of the same properties as bilayers across apertures in Teflon films. In addition, these bilayers remain unbroken at transmembrane potentials over ±400 mV, higher than Teflon-supported bilayers. We also demonstrate single channel recordings from the staphylococcal protein pore α-hemolysin.; The Artificial Synapse Chip is a platform for investigating a variety of biological systems. Using this device, we have studied membrane-bound proteins and developed a prototype interface for retinal prostheses. While this is only a proof of concept for a retinal prosthetic interface, it is a significant step towards mimicking neurotransmitter release during synaptic transmission.
Keywords/Search Tags:Artificial synapse chip, Retinal, Prostheses, Proteins, Interface
Related items