Font Size: a A A

Intensity Focusing and Guided Wave Nanophotonic Devices Using Surface Plasmon Polaritons

Posted on:2012-05-08Degree:Ph.DType:Thesis
University:The Chinese University of Hong Kong (Hong Kong)Candidate:Zhang, HaixiFull Text:PDF
GTID:2458390011450865Subject:Optics
Abstract/Summary:
This thesis focuses on tailoring surface plasmons (SPs) from the viewpoints of structural and material properties with the following objectives:;(1) To develop a new class of simple plasmonic devices based on tailoring of propagating surface plasmons (PSPs) or cooperation between PSPs and localized plasmon resonance (LPRs) to offer significant field focusing and intensity enhancement. It can serve a wide range of applications, including high field related biomolecular sensing and detection as well as non-linear optical effects.;(2) To design low loss nanophotonic waveguides based on gain medium, which may offer real opportunity for practical nanophotonic devices. To obtain a theoretical interpretation of relationship between surface plasmon resonance and host environment where the plasmonic structure embedded. This study should provide further insight towards sensing and device design.;We have achieved the following results in this project:;(1) A novel SERS excitation source based on focusing of surface plasmons around the center hole of a metal disk for cascaded enhancement is put forward and studied theoretically. The device offers intense SERS excitation with quasi-uniformity and horizontal polarization over a comparatively large hole. As revealed by finite-difference time-domain (FDTD) method, the intensity spectra and the characteristics of the near field for the wavelength range of 650-1000 nm exhibit a number of enhancement modes. Electric field intensity of the optimal mode enhances the SERS signal inside the hole by over four orders. An analytical model was also developed to gain precise interpretation on FDTD results. Our model also reveals the possibility of achieving eight orders of enhancement by optimizing the scale of the disk. Our results indicate that much higher electric field enhancement in hollow metal disks (HMDs) can only be possible when we have a hole at the centre and the direction of the focusing field is parallel to the surface of the plasmonic device. This is because of the presence of an insulating gap at the center, that higher level of electric field can exist as electrons are not allowed to flow pass the gap. On the other hand, in the case of a solid metal disk, the flow of mobile electron will tend to dampen the amplitude of the arriving SPs. In addition to generation of highly optimized hot spots for SERS, the large active hole also offers potential applications in fluorescence enhancement and nonlinear spectroscopy.;In addition to HMDs, we also develop a kind of highly optimized hot spots based on diffraction coupling between LPRs via gain-assisted PSPs. Thus derived device was theoretically analyzed. The process of diffraction coupling is achieved via localization of light by LPRs, LPRs-PSPs interplay and PSPs transfer. Our study shows that by incorporating optical gain to PSPs, a very strong boost of the electromagnetic enhancement of LPRs can be expected from a lasing process. We find that with a practical gain level, the enhancement factor of local electric field intensity can be larger than 107. Hence, we offer an ideal configuration to realize high-field dependent single molecule SERS and also a newly applied physical scheme for nano-laser.;(2) We propose a low-loss nanoscale waveguide based on gain-assisted plasmonic resonance MNP chain. We demonstrate that by employing a gain material or even an appropriate dielectric for the host environment, waveguide loss can be reduced dramatically. A highly efficient pseudo-orthonormal basis expansion (POBE) method for obtaining the complex dielectric spectra of the low-loss transmission has been developed. Eigenmode analysis revealed the physical origin of those low-loss waveguiding modes, which opens the possibility to achieve waveguiding other than using conventional dipolar resonances of individual particles. A scheme based on electron beam lithography and chemically synthesized nanoparticles has been proposed to fabricate the device. Such plasmonic waveguides may serve as building blocks for making nanoscale optical devices especially for integrated nanophotonic circuits. Meanwhile, the originally developed POBE method, which reveals the general physical mechanism of SPs, can be used to further explore optimized gain-assisted plasmonic structures to design favorable nanophotonic devices. (Abstract shortened by UMI.).
Keywords/Search Tags:Nanophotonic devices, Plasmon, Surface, Intensity, Focusing, SERS, Gain, Electric field
Related items