Font Size: a A A

Characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks

Posted on:2014-12-05Degree:Ph.DType:Thesis
University:Colorado School of MinesCandidate:Almrabat, Abdulhadi MFull Text:PDF
GTID:2454390008453262Subject:Civil engineering
Abstract/Summary:
The thesis presents the results of a study of the characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks. A new laboratory High Pressure and High Temperature (HPHT) triaxial testing system was developed to characterize the seismic properties of sandstone under different levels of effective stress confinement and changes in pore-fluid composition. An intact and fractured of Berea sandstones core samples were used in the experimental studies. The laboratory test results were used to develop analytical models for stress-level and pore-fluid dependent seismic velocity of sandstones.;Models for stress-dependent P and S-wave seismic velocities of sandstone were then developed based on the assumption that stress-dependencies come from the nonlinear elastic response of micro-fractures contained in the sample under normal and shear loading. The contact shear stiffness was assumed to increase linearly with the normal stress across a micro-fracture, while the contact normal stiffness was assumed to vary as a power law with the micro-fracture normal stress. Both nonlinear fracture normal and shear contact models were validated by experimental data available in the literature.;To test the dependency of seismic velocity of sandstone on changes in pore-fluid composition, another series of tests were conducted where P and S-wave velocities were monitored during injection of supercritical CO 2 in samples of Berea sandstone initially saturated with saline water and under constant confining stress. Changes in seismic wave velocity were measured at different levels of supercritical CO2 saturation as the initial saline water as pore-fluid was displaced by supercritical CO 2. It was found that the P- iv wave velocity significantly decreased while the S-wave velocity remained almost constant as the sample supercritical CO2 saturation increased. The dependency of the seismic velocity on changes on pore fluid composition during injection of supercritical CO 2 in Berea sandstone was modeled using a re-derived Biot-Gassmann substitution theory. In using the Biot-Gassmann substitution theory, it was found necessary to account for the changes in the pore-fluid compressibility in terms of the volumetric proportion and distribution of saline water and supercritical CO 2 in the sample pore space. This was done by using the empirical model of Brie et al. to account for the compressibility of mixtures of two-phase immiscible fluids. The combined Biot-Gassman and Brie et al. models were found to represent adequately the changes in P-wave velocity of Berea sandstone during displacement of saline water by supercritical CO2.;The third experimental and modeling study addressed shear-wave splitting due to the presence of fractures in a rock mass. Tests were conducted using the high temperature and high pressure (HPHT) triaxial device on samples of Berea sandstone, containing a single induced tensile fracture running along the height of the sample. The fracture was created via a modified Brazilian Split Test loading where the edges of cylindrical samples were loaded on diametrically opposite two points by sharp guillotines. The Joint Roughness Coefficient (JRC) values of the fractured core samples were determined by profilometry and tilt test. The effect of mismatching of the fracture surfaces on shear wave splitting was investigated by applying different amounts of shear displacements to three core samples. The degree of mismatching of the fracture surfaces in the core samples was evaluated using the Joint Matching Coefficient (JMC). Shear-wave splitting, as measured by the difference in magnitudes of shear-wave velocities parallel and perpendicular to the fracture, Vs1 and Vs2 respectively, increases with increasing mismatch of the fracture surfaces and decreases with increasing effective stress, and approaches zero in the effective stress range tested. A model for the stress and JMC dependent shear-wave splitting was developed based on the experimental observations.;Finally, the magnitude of shear-wave splitting was correlated with the permeability of the fractured porous sandstone for fluid flow parallel to the induced fracture. (Abstract shortened by UMI.).
Keywords/Search Tags:Stress, Fracture, Pore-fluid, Modeling, Supercritical CO, Sandstone, Core samples, Shear-wave splitting
Related items