Font Size: a A A

Thermoelectric power systems and the energy-water nexus

Posted on:2013-04-24Degree:Ph.DType:Thesis
University:Illinois Institute of TechnologyCandidate:Walker, Michael EdwardFull Text:PDF
GTID:2452390008974162Subject:Engineering
Abstract/Summary:
The goal of this Thesis is the development of a comprehensive methodology to evaluate the total cost of water use in the recirculating cooling loops of thermoelectric power plants. This methodology expands upon the work presented in the literature to improve estimations of the economic impact of condenser fouling. The methods developed in this Thesis are incorporated into a user friendly Combined Cost Model (CCM) interface that will allow future researchers, students and plant personnel to perform the same comparative analyses presented herein.;The objective of this Thesis is the application of the CCM to determine the economic viability of treated municipal wastewater (MWW) use to replace freshwater for cooling in power plants with recirculating cooling systems. To accomplish this objective, a set of case study evaluations are included to (1) evaluate the sensitivity of the economic impact of fouling to condenser design and operation, (2) determine the cost of treated MWW use in pulverized coal power plants, and (3) compare the relative cost of degraded water use in advanced power systems such as IGCC and oxy-combustion.;The results of these evaluations show that current freshwater prices do not provide an economic incentive to switch to the use of treated MWW water. However, results indicate that the breakeven differential price of freshwater, at which the total costs of using freshwater and treated MWW are equal, is only 0.52 ;This Thesis also presents a novel, hybrid coal conversion concept, the dry gasification oxy-combustion (DGOC) power cycle. This process is similar to oxy-combustion, in that it maintains a concentrated CO2 flue stream and does not utilize a complex separation step. However, coal conversion and sulfur removal are performed within a gasification unit. It is estimated to achieve CCS goals with a higher efficiency than the leading alternative strategies.
Keywords/Search Tags:Water, Power, Treated MWW, Systems, Cost, Thesis
Related items