Font Size: a A A

Geometric Descriptions of Couplings in Fluids and Circuits

Posted on:2013-02-06Degree:Ph.DType:Thesis
University:California Institute of TechnologyCandidate:Jacobs, Henry OFull Text:PDF
GTID:2451390008487376Subject:Mathematics
Abstract/Summary:
Geometric mechanics is often commended for its breadth (e.g., fluids, circuits, controls) and depth (e.g., identification of stability criteria, controllability criteria, conservation laws). However, on the interface between disciplines it is commonplace for the analysis previously done on each discipline in isolation to break down. For example, when a solid is immersed in a fluid, the particle relabeling symmetry is broken because particles in the fluid behave differently from particles in the solid. This breaks conservation laws, and even changes the configuration manifolds. A second example is that of the interconnection of circuits. It has been verified that LC-circuits satisfy a variational principle. However, when two circuits are soldered together this variational principle must transform to accommodate the interconnection.;Motivated by these difficulties, this thesis analyzes the following couplings: fluid-particle, fluid-structure, and circuit-circuit. For the case of fluid-particle interactions we understand the system as a Lagrangian system evolving on a Lagrange-Poincare bundle. We leverage this interpretation to propose a class of particle methods by ``ignoring'' the vertical Lagrange-Poincare equation. In a similar vein, we can analyze fluids interacting with a rigid body. We then generalize this analysis to view fluid-structure problems as Lagrangian systems on a Lie algebroid. The simplicity of the reduction process for Lie algebroids allows us to propose a mechanism in which swimming corresponds to a limit-cycle in a reduced Lie algebroid. In the final section we change gears and understand non-energetic interconnection as Dirac structures. In particular we find that any (linear) non-energetic interconnection is equivalent to some Dirac structure. We then explore what this insight has to say about variational principles, using interconnection of LC-circuits as a guiding example.
Keywords/Search Tags:Circuits, Fluids, Interconnection
Related items