Font Size: a A A

The characterization of dielectric properties of platinum-Nafion-poly(3,4-ethylenedioxythiophene) system

Posted on:2007-11-24Degree:Ph.DType:Thesis
University:University of California, Los AngelesCandidate:Kim, Hyo-SeokFull Text:PDF
GTID:2451390005984512Subject:Engineering
Abstract/Summary:
The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers.; This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer.; In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are reflected and then detected by a receiver. The time interval or frequency change between emission and detection is measured as an indicator for the distance.; The purpose of this project is to conduct fundamental study into the material properties with an emphasis on polarization-related phenomena. This project specifically focuses on the power generating properties of the hybrid PNP composite device and its application. This device is a new system being applied for the first time because of its potential for generating power.; The specific aspects of the devices being studied in the project encompass both macroscopic and microscopic properties of hybrid PNP composite. The microscopic properties include electrical property as measured by impedance spectroscopy and dielectric response characteristics to examine the power generating mechanism of induced polarization for PNP composite device. The produced current and power efficiency by mechanical deformation operation are compared.
Keywords/Search Tags:PNP composite, Device, Power, Mechanical, Polymer, Piezoelectric
Related items